
Revealing the Machine
A Study of the Rich Header and Respective Malware Triage



Julian Kirsch
Technical University of Munich

Specializes in reverse engineering, binary 
exploitation, and Virtual Machine 

Introspection

George Webster
Technical University of Munich

Specializes in developing scalable 
methods to perform cyber analytics, 

dynamic and static analysis techniques, 
and distributed systems



01Why Are We Here?

Problem
Why Do You Care



Data,
Data,

Everywhere

How do you:
- Triage?
- Find related data?
- Make sense of 

everything?



What about this 
obscure PE32 field?

Overlooked, poorly documented, inaccurate 
assessments



Rich 
Header

Rich Header is an overlooked and poorly 
understood aspect of PE32

● Product ID: Unique identifier for major and generic library 
packages

● Version: Reports version information, and compiler flags, 
of the product

● Times Used: Records the number of times the linker 
accesses the product



02 Background

PE32 File Format
Compiler Tool Chain



PE File

Stub between DOS and COFF header 
containing two things:

01
DOS program printing “This program cannot be run in 
DOS mode”

● Documented by Microsoft
● Can be replaced by any valid MS-DOS 

application using MSVC’s /STUB compiler flag

02
RICH header containing unknown bytes terminated 
by the string “Rich” and a magic number

● Never officially mentioned by Microsoft
● No consistent explanation available



cl.exe
Command-Line 

Interpreter

c1.dll
MSVC Front-End 

Compiler

c1xx.dll
MSVC++ Front-End 

Compiler

c2.dll
Code Generator / 

Back-End Compiler

link.exe
Linker / Dumper / Editor 

/ Library Manager

Start

.
Intermediate File

*.obj
Object File

*.exe/*.dll
Portable Executable / 
Dynamic Link Library

*.lib
Static Library

dumpbin.exe
EXE Parser

editbin.exe
COFF Binary Editor

lib.exe
Library Manager

MSVC 
Compiler 
Toolchain

Consisting of:
- Command-Line 

Interpreter
- C/C++ Frontend
- Code Generator
- (Multi Purpose) 

Linker



03Rich Header

What does it contain?
What are these @comp.ids?
How is it created?
How is it extracted?



Obfuscated, 
Undocumented,  

Part of the
PE Header

Included in MS Toolchain 
since Visual Studio 6 (1998) 

and maybe even earlier. First 
discussed in 2004 and 

reverse engineered in 2008 
by Daniel Pistelli

01
Added by the Microsoft Linker

02
Each iteration of the Microsoft 
Toolchain adjusts how the Rich Header 
is generated and updates product 
mapping

03
Contains information about how the 
binary was created



PE32 
Structure

Let’s dive into it!



e_
lf

an
ew

00000000: 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|
00000010: b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|
00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 f0 00 00 00 |................|
00000040: 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|
00000050: 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|
00000060: 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |
00000070: 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|
00000080: 16 f7 59 40 52 96 37 13 52 96 37 13 52 96 37 13 |..Y@R.7.R.7.R.7.|
00000090: 8f 69 f9 13 50 96 37 13 5f c4 ea 13 50 96 37 13 |.i..P.7._...P.7.|
000000a0: 5f c4 e8 13 50 96 37 13 5f c4 d7 13 46 96 37 13 |_...P.7._...F.7.|
000000b0: 5f c4 d6 13 5b 96 37 13 8f 69 fc 13 5b 96 37 13 |_...[.7..i..[.7.|
000000c0: 52 96 36 13 48 97 37 13 5f c4 de 13 33 96 37 13 |R.6.H.7._...3.7.|
000000d0: 5f c4 ec 13 53 96 37 13 5f c4 e9 13 53 96 37 13 |_...S.7._...S.7.|
000000e0: 52 69 63 68 52 96 37 13 00 00 00 00 00 00 00 00 |RichR.7.........|
000000f0: 50 45 00 00 64 86 06 00 df ba 90 55 00 00 00 00 |PE..d......U....|

...

DOS Header                    COFF Header                    Rich Header



00000080: 16 f7 59 40 52 96 37 13 52 96 37 13 52 96 37 13 |..Y@R.7.R.7.R.7.|
00000090: 8f 69 f9 13 50 96 37 13 5f c4 ea 13 50 96 37 13 |.i..P.7._...P.7.|
000000a0: 5f c4 e8 13 50 96 37 13 5f c4 d7 13 46 96 37 13 |_...P.7._...F.7.|
000000b0: 5f c4 d6 13 5b 96 37 13 8f 69 fc 13 5b 96 37 13 |_...[.7..i..[.7.|
000000c0: 52 96 36 13 48 97 37 13 5f c4 de 13 33 96 37 13 |R.6.H.7._...3.7.|
000000d0: 5f c4 ec 13 53 96 37 13 5f c4 e9 13 53 96 37 13 |_...S.7._...S.7.|
000000e0: 52 69 63 68 52 96 37 13 00 00 00 00 00 00 00 00 |RichR.7.........|

Header Structure

● Header (3 x 4 bytes)
○ “DanS”
○ Zero padding (fix!)

● @Comp.id Blocks (n x 8 bytes)
○ n @Comp.id Blocks

● Footer (8 + x bytes)
○ “Rich” identifier
○ Checksum
○ Zero padding (presumably to next multiple of 16)

XORed with Checksum



00000080: 44 61 6e 53 00 00 00 00 00 00 00 00 00 00 00 00 |DanS............|
00000090: dd ff ce 00 02 00 00 00 0d 52 dd 00 02 00 00 00 |.........R......|
000000a0: 0d 52 df 00 02 00 00 00 0d 52 e0 00 14 00 00 00 |.R.......R......|
000000b0: 0d 52 e1 00 09 00 00 00 dd ff cb 00 09 00 00 00 |.R..............|
000000c0: 00 00 01 00 1a 01 00 00 0d 52 e9 00 61 00 00 00 |.........R..a...|
000000d0: 0d 52 db 00 01 00 00 00 0d 52 de 00 01 00 00 00 |.R.......R......|
000000e0: 52 69 63 68 52 96 37 13 00 00 00 00 00 00 00 00 |RichR.7.........|

Header Structure

● Header (4 + 12 bytes)
○ “DanS”
○ Zero padding (fix!)

● @Comp.id Blocks (n x 8 bytes)
○ n @Comp.id Blocks

● Footer (8 + x bytes)
○ “Rich” identifier
○ Checksum
○ Zero padding (presumably to next multiple of 16)

}XORed with Checksum



01
02
03Structure of 

@comp.id

mCV
Minor version of the compiler used to make the 
product

ProdID
Unique identifier that specifies a specific identify 
or type of object

Count
Specifies how often the specific ProdID and mCV 
were used by the linker



ProdID

01 02
1) Generic identifier: Identifies the referenced 

object type and VS Release
2) Unique identifier: Appears to map to major 

libraries but exact definition is unknown

ProdID VS Release Object Type Generator

0x105
0x104
0x103
0xff
0xb4
0x5e
0x15

2015
2015
2015
2015
2010
.NET
6

C++
C
Assembly
Resource File
C++
Resource File
C

c2.dll
c2.dll
c2.dll
cvtres.exe
c2.dll
cvtres.exe
c2.dll



Checksum

- Rotate the DOS 
Header bytes by their 
offset

- Rotate contents of 
@comp.ids by their 
count 

- Only 37 of the 64 bits 
per @comp.id are 
checksummed!

## Rotate left helper function
rol32 = lambda v, n: \
        ((v << (n & 0x1f)) & 0xffffffff) | \
        (v >> (32 - (n & 0x1f)))

## raw_dat is a bytearray containing the exe's data
## compids is the list of deciphered @compid structs
## off is the offset to the start of the Rich Header
def calc_csum(raw_dat, compids, off):

csum = off

for i in range(off):
        ## skip e_lfanew as it's not initialized yet
        if i in range(0x3c, 0x40):
            continue
    csum += rol32(raw_dat[i], i)

for c in compids:
        csum += rol32((c['prodid'] << 16) | c['mcv'], \
                c['count'])

return csum & 0xffffffff



cl.exe
Command-Line 

Interpreter

c1.dll
MSVC Front-End 

Compiler

c1xx.dll
MSVC++ Front-End 

Compiler

c2.dll
Code Generator / 

Back-End Compiler

link.exe
Linker / Dumper / Editor 

/ Library Manager

Start

.
Intermediate File

*.obj
Object File

*.exe/*.dll
Portable Executable / 
Dynamic Link Library

*.lib
Static Library

dumpbin.exe
EXE Parser

editbin.exe
COFF Binary Editor

lib.exe
Library Manager

Insertion of 
Rich 

Header

- Back-End Compiler 
generates one 
@comp.id per 
object

- Linker collects 
@comp.ids from 
objects and puts 
them into the PE.



04 Statistics

Samples with Rich Header
Samples without the Rich Header



Random 

71% 98% 37% 2%
1 million samples. Including 

packed and obfuscated 
malware

APT1
298 samples from a 
popular APT actor

Zeus-Citadel
1928 samples from a 

popular criminal malware 
variant

Mediyes
1873 samples from a 

dropper that contains a 
valid signature



The Microsoft 
Linker always adds 
the Rich Header

No Header:
● .Net
● MinGW
● GCC
● dUP

With Header:
● Visual Studios
● Intel
● UPX*
● ASPack*
● Nullsoft*

*  More to come!



05So What?

Identifying Suspicious Binaries
Similarity Matching
Demonstration
Discussion



Discrepancies are 
GREAT!

Corrupt Checksum
Post modified binary

Duplicate Entries
Packing Error

Fast!
Very inexpensive check to perform. Out of 1 million 
samples, identified 22% were packed



Can we do more?



With only the data in the 
Rich Header can we create 
the following:

Fast

Return the results in 
near real-time

Similarity 
Matching

Identify binaries that are 
similar. Potentially 

different versions or 
baked in

Fingerprint 
Actors

Identify binaries that 
were created under 

similar build 
environments



Dimension
Reduction

Stacked 
Autoencoder

Benefits:
- Easier: denser 

lower-dimensional 
space

- Efficient: reduced 
memory 
requirement



Similarity 
matching

KNN w/ Ball 
Tree

Benefits:
- Less pre-processing
- No predefined 

number of groups
- Fast lookups: 6.73ms

Per 2 million

6.73 ms



Demo!

Finding similar malware across a million samples



Visualizing the Demo
Top 10 Nearest Neighbor “clusters”



“

“

Case Study 
APT1

Based on SHA256: 
F737829E9AD9A025945AD9
CE803641677AE0FE3ABF43
B1984A7C8AB994923178

All samples have different 
AV signatures

Detected 1 sample

1:1 Match
Identical functionality
Identical code base

Sha256 difference was from compiler 
artifacts

Matching Rich Header

Detected 3 samples

1) Different Build Environment 
Library versions were slightly off

2) Different Version
Adds function “FlushFileBuffers”

3) Version Upgrade
Removes double write by calling strcat

Nearest Neighbors



“

“

Case Study 
Zeus

Based on SHA256: 
8471A205E1E85080B7230D
B19D773D43A559ECA7A4B8
92E64E74C4E7E0A0D3BD

Most samples have a 
generic AV signature

Detected 23 samples

1:1 Match
Identical functionality

Assembly equivalent:
- XOR uses a “do while” versus “for” loop
- Code segments reordered

Matching Rich Header

Detected 4 samples

Different version
Identical functionality

XOR algorithm loops >8 times more

Nearest Neighbors



“

“

Case Study 
Zeus
cont

Based on SHA256: 
7F1A07F484A8AE853DB936
4508A7BDFD3718BFA5E311
5AD941B216D0B662A880

Most samples have no 
signature of generic AV 
signatures

Detected 36,606 samples

1:1 Match
Identical functionality
A constant value changes

16,123 samples have no AV detection

Matching Rich Header

Detected 1,567 samples

Different Build Environment
Identical functionality
Library versions were slightly off

511 samples have no AV detection

Nearest Neighbors



Validation

Correlation of IDA generated 
code across 1 million 
random samples. Using 
entropy of source code.



06 Conclusion

Where do we go from here
Conclusion



Future
Rich Header is valuable for triage but future work 
remains:

● ProdID: What are the true mappings? 
● Checksum: Why is the checksum designed as it is?
● Purpose: What was the original intention, why it is 

maintained, why is it hidden?
● Combine: Individual triage methods can be overcome. 

We need to combine with other algorithms to reach the 
full potential

Ripe for Research and Incorporation with Existing Methods!



Releasing 
The Rich 

Header 
Extractor

Apache2 License
Docker Service
Ready to use with Holmes

holmesprocessing.github.io

https://holmesprocessing.github.io/


Take-aways
Rich Header is valuable for triage

● Quick Detection: Identifies packed and post modified 
binaries

● Similarity Matching: Finds binaries with same 
functionality

● Build Environment Fingerprinting: Actors?

We need help! Please send us copies of your C2.dll, 
cvtres.exe, link.exe, and ml.exe



George Webster & 
Julian Kirsch 
Technical University of Munich
Chair for IT Security
holmesprocessing.github.io

Thank you
● Bojan Kolosnjaji
● Christian von Pentz
● Marcel Schumacher
● Zachary Hanif
● Apostolis Zarras
● Claudia Eckert

https://holmesprocessing.github.io/

