D TLTI

Combating Control Flow Linearization

Julian Kirsch, Clemens Jonischkeit, Thomas Kittel,
Apostolis Zarras & Claudia Eckert

Technical University of Munich

May 31, 2017

Introduction

Control Flow Linearization

Control Flow Linearization

bb0

dsmrt

bb0

bb1

bbl

bb2

bb3

bb4

bb2

bb3

bb4

Control Flow Flattening

init

bb0

bbl

bb2

bb3

bb4

Technical
University
of Munich

Tm

Background == TUM

of Munich
The M/o/Vfuscator

» X86(-64) is Turing complete. it
» Question: Smallest subset of Xx86(-64) instructions that still is Turing

complete? bb0

bb1

bb2

bb3

bb4

Background

The M/o/Vfuscator

» X86(-64) is Turing complete.
» Question: Smallest subset of Xx86(-64) instructions that still is Turing
complete?

» Answer: 1 instruction — mov [1]
= The M/o/Vfuscator: C to x86/mov compiler [2]
= Control flow Linearization by instruction substitution

B [1] Mov Is Turing Complete. Stephen Dolan. 2013.

B [2] The M/o/Vfuscator: Turning the mov Instruction into a Soul-Crushing RE
Nightmare. Christopher Domas. 2015.

Technical
University
of Munich

bb0

bb1

bb2

bb3

bb4

Tm

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

mov
mov
mov
mov
mov

mov
mov
mov

eax, dword_83F55B8

edx, 8804857Eh
dword_81F5440, eax
dword_81F5444, edx

eax, 0

ecx, 0

edx, 0O

al, byte ptr dword_81F5440
ecx, off_804FA50[eax*4]

dl, byte ptr dword_81F5444
dl, [ecx+edx]

dword_81F5430, edx

al, byte ptr dword_81F5440+1
ecx, off_804FA50[eax*4]

dl, byte ptr dword_81F5444+1
dl, [ecx+edx]

dword_81F5434, edx

eax, dword_81F5430

edx, dword_81F5434

eax, off_804C4F0[eax*4]
eax, [eax+edx*4]
dword_81F5430, eax

eax, off_804C4F0[eax*4]
eax, [eax+edx*4]
dword_81F5430, eax
4/20

Motivation == TUM

CFL Hindering Program Analysis

Effectiveness against the angr (@) symbolic execution engine:

Firmalice [3]: Clean Obfuscated

bb2

Basic Blocks Executed 37
Analysis Time (s) 5.1
Explored Paths 2

Executable Size (bytes) 5400 5,962,776

B [3] Firmalice — Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware.
Yan Shoshitaishvili et al.. 2015 5/ 20

Motivation == TUM

CFL Hindering Program Analysis

Effectiveness against the angr (@) symbolic execution engine:

Firmalice [3]: Clean Obfuscated

bb2

Basic Blocks Executed 37 99,999
Analysis Time (s) 5.1 1704.3
Explored Paths 2 1

Executable Size (bytes) 5400 5,962,776

B [3] Firmalice — Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware.
Yan Shoshitaishvili et al.. 2015 5/20

Combating Control Flow Linearization == TUM

A Bird’s Eye Perspective

1. Find critical data structures indicating the linearized program’s execution state.
2. Infer basic block labels using backward taint analysis and constraint solving.

3. Find and identify types of control flow changing instructions.

4. Patch binary to reconstruct control flow.

6 /20

Combating Control Flow Linearization == TUM

of Munich

Example: Program with Linearized Control Flow

#define DEFVAR(TYPE, NAME) TYPE NAME[2] = { O }

> #define TRUVAL(X) (X[11) -
3 #define ASSIGN(VAR, VAL, CONDVAR, CONDNUM) \
! do { VAR[TRUVAL(CONDVAR) == CONDNUM] = VAL; } while (0)

6 void nop(void) { return; }

§ int main(int argc, char +#argv) { bb0
9 DEFVAR(size_t, state); DEFVAR(size_t, cmp);

10 DEFVAR(uint64_t, fac);

1 DEFVAR(size_t, 1i); DEFVAR(size_t, j);

12 void (xmy_exit[2])(int) = { nop, exit }; bbl
13 int (#my_printf[2])(const char %, ...) = { nop, printf };

14

15 do {

16 ASSIGN(1i, 1, state, 0); bb2
17 ASSIGN(], atoi(argv[1]), state, 0);

18 ASSIGN(fac, 1, state, 0);

19 ASSIGN(state, 1, state, 0);

20 ASSIGN(fac, TRUVAL(fac) * TRUVAL(i), state, 1);

2 ASSIGN(i, TRUVAL(i) + 1, state, 1);

2 ASSIGN(cmp, TRUVAL(i) > TRUVAL(j), state, 1); bb3
23 ASSIGN(state, 2, cmp, 1);

2 my_printf[TRUVAL(state) == 2]("%llu\n", TRUVAL(fac));

2 my_exit[TRUVAL (state) == 2](0); bb4

26 } while (1);

Combating Control Flow Linearization == TUM

Example: Program with Linearized Control Flow

[1 #define DEFVAR(TYPE, NAME) TYPE NAME[2] = { O }
> #define TRUVAL(X) (X[11)

3 #define ASSIGN(VAR, VAL, CONDVAR, CONDNUM) \
! do { VAR[TRUVAL(CONDVAR) == CONDNUM] = VAL; } while (0)

6 void nop(void) { return; }

s int main(int argc, char +#argv) { bb0
9 DEFVAR(size_t, state); DEFVAR(size_t, cmp);

10 DEFVAR(uint64_t, fac);

11 DEFVAR(size_t, i); DEFVAR(size_t, j);

12 void (xmy_exit[2])(int) = { nop, exit }; bbl
13 int (#my_printf[2])(const char %, ...) = { nop, printf };

14

15 do {

16 ASSIGN(1i, 1, state, 0); bb2
17 ASSIGN(], atoi(argv[1]l), state, 0);

18 ASSIGN(fac, 1, state, 0);

19 ASSIGN(state, 1, state, 0);

20 ASSIGN(fac, TRUVAL(fac) * TRUVAL(i), state, 1);

21 ASSIGN(i, TRUVAL(i) + 1, state, 1);

2 ASSIGN(cmp, TRUVAL(i) > TRUVAL(j), state, 1); bb3
23 ASSIGN(state, 2, cmp, 1);

2 my_printf[TRUVAL(state) == 2]("%llu\n", TRUVAL(fac));

2 my_exit[TRUVAL (state) == 2](0); bb4

26 } while (1);

Combating Control Flow Linearization == TUM

Example: Program with Linearized Control Flow

| #define DEFVAR(TYPE, NAME) TYPE NAME[2] = { O }
» #define TRUVAL(X) (X[11)

3 #define ASSIGN(VAR, VAL, CONDVAR, CONDNUM) \
! do { VAR[TRUVAL(CONDVAR) == CONDNUM] = VAL; } while (0)

6 void nop(void) { return; }

§ int main(int argc, char +#argv) { bb0
9 DEFVAR(size_t, state); DEFVAR(size_t, cmp);

10 DEFVAR(uint64_t, fac);

11 DEFVAR(size_t, 1i); DEFVAR(size_t, j);

12 void (xmy_exit[2])(int) = { nop, exit }; bbl
13 int (#my_printf[2])(const char %, ...) = { nop, printf };

14

15 do {

16 ASSIGN(1i, 1, state, 0); bb2
17 ASSIGN(], atoi(argv[1]l), state, 0);

18 ASSIGN(fac, 1, state, 0);

19 ASSIGN(state, 1, state, 0);

20 ASSIGN(fac, TRUVAL(fac) * TRUVAL(i), state, 1);

21 ASSIGN(i, TRUVAL(i) + 1, state, 1);

2 ASSIGN(cmp, TRUVAL(i) > TRUVAL(j), state, 1); bb3
23 ASSIGN(state, 2, cmp, 1);

2 my_printf[TRUVAL(state) == 2]("%llu\n", TRUVAL(fac));

2 my_exit[TRUVAL (state) == 2](0); bb4

26 } while (1);

Combating Control Flow Linearization == TUM

Example: Program with Linearized Control Flow

| #define DEFVAR(TYPE, NAME) TYPE NAME[2] = { O }
> #define TRUVAL(X) (X[11)

3 #define ASSIGN(VAR, VAL, CONDVAR, CONDNUM) \
4 do { VAR[TRUVAL(CONDVAR) == CONDNUM] = VAL; } while (0)

[6 void nop(void) { return: ¥

§ int main(int argc, char +#argv) { bb0
9 DEFVAR(size_t, state); DEFVAR(size_t, cmp);

10 DEFVAR(uint64_t, fac);

11 DEFVAR(size_t, i); DEFVAR(size_t, j);

12 void (xmy_exit[2])(int) = { nop, exit }; bbl
13 int (+«my_printf[2])(const char %, ...) = { nop, printf };

14

15 do {

16 ASSIGN(1i, 1, state, 0); bb2
17 ASSIGN(], atoi(argv[1]l), state, 0);

18 ASSIGN(fac, 1, state, 0);

19 ASSIGN(state, 1, state, 0);

20 ASSIGN(fac, TRUVAL(fac) * TRUVAL(i), state, 1);

21 ASSIGN(i, TRUVAL(i) + 1, state, 1);

2 ASSIGN(cmp, TRUVAL(i) > TRUVAL(j), state, 1); bb3
23 ASSIGN(state, 2, cmp, 1);

2 my_printf[TRUVAL(state) == 2]("%llu\n", TRUVAL(fac));

2 my_exit[TRUVAL(state) == 2](0); bb4

26 } while (T);

Combating Control Flow Linearization == TUM

of Munich

Example: Program with Linearized Control Flow

» Shortcut: Check state only once per basic block, store result in variable ON, set on to false
after each basic block:

| #define DEFVAR(TYPE, NAME) TYPE NAME[2] = { O }
> #define TRUVAL(X) (X[11)

s #define ASSIGN(VAR, VAL, CVAR, CNUM) do { VAR[TRUVAL(CVAR) == CNUM] = VAL; } while (0)
s+ #define ASSIGN_FAST(VAR, VAL, ON) do { VAR[TRUVAL(ON)] = VAL; } while (0)

6 int main(int argc, char xxargv) {
7 DEFVAR(size_t, state); DEFVAR(uint64_t, fac); DEFVAR(uint8_t, on);

8 DEFVAR(size_t, i); DEFVAR(size_t, j);

10 do {

11 ASSIGN (on, 1, state, 0);
12 ASSIGN_FAST(1i, 1, on);

13 ASSIGN_FAST(j, atoi(argv[1]), on);

14 ASSIGN_FAST(fac, 1, on);

15 ASSIGN_FAST(state, 1, on);

16 TRUVAL(on) = 0;

17 ASSIGN (on, 1, state, 1);
18 ASSIGN_FAST(fac, TRUVAL(fac) * TRUVAL(i), on);

19

20 } while (1);

Combating Control Flow Linearization == TUM

Finding Critical Data Structures

= Observation: ON becomes the most accessed data structure in linearized code:

1 do {

2 ASSIGN (on, 1, state, 0);

3 ASSIGN_FAST(1i, 1, on);
ASSIGN_FAST(j, atoi(argv[1]l), on);

5 ASSIGN_FAST(fac, 1, on);

6 ASSIGN_FAST(state, 1, on);

7 TRUVAL(on) = 0;

8 ASSIGN (on, 1 state, 1);

) ASSIGN_FAST(fac, TRUVAL(fac) + TRUVAL(i), on);

11 } while (1);
12 }

= ON trivial to detect by linear sweep disassembly or frequency analysis of memory access
patterns

9/20

Combating Control Flow Linearization == TUM

A Bird’s Eye Perspective

1. Find critical data structures indicating the linearized program’s execution state.
2. Infer basic block labels using backward taint analysis and constraint solving.

3. Find and identify types of control flow changing instructions.

4. Patch binary to reconstruct control flow.

Combating Control Flow Linearization =TI

University
of Munich

Inferring Basic Block Labels

» Observation: Any given basic block writes 1 to ON if the state variable equals the
respective block’s LABEL:
1

y) ASSIGN(on, 1, state, 0);

s ASSIGN(on, 1, state, 1);

= Reconstruct predicate used to access ON (i.e. a = state == 0inon[a] = 1) using
backwards taint analysis.

= Build up syntax tree of arithmetic / logic operations

applied to the state variable. = =] — L 5

= Constrain formula to be 1, and solve system using an
SMT solver (z3).

= Result: List of basic block labels + location of state

11 / 20

Combating Control Flow Linearization == TUM

A Bird’s Eye Perspective

1. Find critical data structures indicating the linearized program’s execution state.
2. Infer basic block labels using backward taint analysis and constraint solving.

3. Find and identify types of control flow changing instructions.

4. Patch binary to reconstruct control flow.

Combating Control Flow Linearization == TUM

Identifying Types of Control Flow Changing Instructions

» Employ backwards taint analysis on positions writing to state.

» Four different cases for predicate and value written:

Jump / Call:

| xstack_ptr-- = label_0;
> state[TRUEVAL(on)] = label_1;

Conditional Jump:

| state[condition] = label;

Indirect jump: Return:
I X = ... I X = «stack_ptr++;
2 state[TRUVAL(on)] = Xx; > state[TRUVAL(on)] = Xx;

= Location of stack_ptr

= (Un-)conditional edges of the control flow graph

Combating Control Flow Linearization == TUM

A Bird’s Eye Perspective

1. Find critical data structures indicating the linearized program’s execution state.
2. Infer basic block labels using backward taint analysis and constraint solving.

3. Find and identify types of control flow changing instructions.

4. Patch binary to reconstruct control flow.

14 / 20

Combating Control Flow Linearization

Patching the Binary

A
A

3}
B

C

—| C D | ——

D Y
E

E
F

F

acy

s
35
243
3¢
sz8

Combating Control Flow Linearization == TUM

Patching the Binary

1. Find critical data structures indicating the linearized program’s execution state.
2. Infer basic block labels using backward taint analysis and constraint solving.

3. Find and identify types of control flow changing instructions.

4. Patch binary to reconstruct control flow.

16 / 20

Evaluation == TUM]

UUUUUU

Control Flow Linearization: Cost and Gain

CFL overhead in terms of run-time (seconds) and code size (bytes):

Primes Factorial SHA-256
Non-Lin. Lin. Non-Lin. Lin. Non-Lin. Lin.
Non-Sub. 0.88 s 5.03 s <0.01s <0.01s 0.02s 04s
Sub 62.82s 289.47 s <0.01s <0.01s 8.09 s 60.57 s

Deobfuscation times of the implementation of our algorithm:

Primes Factorial SHA-256 AES
047 s 0.213 s 0.824s 3.68s

17 / 20

Evaluation s TUT

Control Flow Linearization: Cost and Gain

Execution time of the angr (@) symbolic execution engine to detect a backdoor in an example
executable:

Clean Obfuscated Deobfuscated

Basic Blocks Executed 37 99,999 87
Execution Time (s) 5.1 1704.3 17.9
Explored Paths 2 1 3

Executable Size (bytes) 5400 5,962,776 5,962,776

Conclusion == TUM]

of Munich

» Control Flow Linearization unsuited for obfuscating real time applications
» Major challenge for state of the art symbolic execution engines

» Presence of control data structures makes deobfuscation easy

19 / 20

Contact == TUM]

nivers
of Munich

» mail@kirschju.re
PGP: F949 CFBD 140A 6DDO 71E9 0B8C DC24 396B 6D45 1038

» Sources available — documentation pending :-)
— Source code:
https://github.com/kirschju/demovfuscator
— Project website:
https://kirschju.re/demov
— Combating Control Flow Linearization:
https://kirschju.re/static/cfl.pdf
— Slides:
https://kirschju.re/static/ifip.pdf

Thanks!

	Introduction
	Control Flow Linearization

	Background
	The M/o/Vfuscator

	Motivation
	CFL Hindering Program Analysis

	Combating Control Flow Linearization
	A Bird's Eye Perspective
	Example: Program with Linearized Control Flow
	Finding Critical Data Structures
	Inferring Basic Block Labels
	Identifying Types of Control Flow Changing Instructions
	Patching the Binary

	Evaluation
	Control Flow Linearization: Cost and Gain

	Conclusion
	Contact

