Julian Kirsch

Malicious Bits and
How to Fight Them

PhD Thesis Defense

Malicious Bits

STRUCTURE OF THIS PRESENTATION

Malicious Software

/\

Hides Behaviour Attacks System
Obfuscated Split Personality Armed
Malware Malware Malware

Part A Part B Part C

Malicious Software

/

Hides Behaviour

=

Obfuscated
Malware

Part A

IObfusca’red Malware

,The action of making something
obscure, unclear, or unintelligible.”
— Oxford English Dictionary

* Malware: Hindering Static Binary Analysis

Obfuscation

o
—

De-Obfuscation

2022-09-09 MALICIOUS BITS AND HOW TO FIGHT THEM

Intfroduction & Motivation

CONTROL FLOW LINEARIZATION

Obfuscation Technique Description Analysis
Mixed Boolean Arithmetic Expressions [3, 8] 6, 7]
Bogus Control Flow 1] 9]
Control Flow Flattening 1] 10, 11]
Control Flow Linearization 4, 5] ?
Self-Modifying Code 14] 13]
Opaque Predicates 1] 9]
Interpreted Execution 2] 12]

Intfroduction & Motivation

CONTROL FLOW LINEARIZATION

Research Question |

How does Control Flow Linearization
impact analysis difficulty, and how can the
original control flow graph be reconstructed
from linearized machine code?

Obfuscating Transformation

CONTROL FLOW LINEARIZATION

e Control flow is made implicit.

e This makes it difficult to ...

e ... establish happens-before
relationships.
e ... enumerate paths

through the program.

Control Flow
Linearization

e First public implementation:
MOVfuscator [5]

Inverse
Operation
possible?

IObfusca’ring Transformation

CONTROL FLOW LINEARIZATION

e Structure: Pro logue

* Body: Loop until exit condition is true

* Central Observations:
e All instructions are executed unconditionally.
* Memory writes must be discarded depending on
internal state.

Body

- Every variable has a real and a scratch version.
- State variable controls what version to target.

Epilogue

Obfuscating Transformation

CONTROL FLOW LINEARIZATION

#include <stdlib.h>

#define OFF REAL 1
#define OFF SCRATCH 0O

void (void) { ;)
int (int argc, char **argv) {

unsigned int state[2] = { 0, }; unsigned i[2] = { O, }; unsigned j[2] = { 0, }s
int (*exit ptr[2])(int code) = { nop, exit };

1
2
3
4
5
6
7
8
9

(1) {
i[state[OFF REAL] == 0]
jIstate[OFF REAL] == 0] ;
state[state[OFF REAL] == 0] = j[state[OFF REAL] ==
exit ptr[state[OFF REAL] == 1](i[state[OFF REAL] ==

+

[
’

IDeobfusca’rion Approach

CONTROL FLOW LINEARIZATION

[OFF REAL] ==
[OFF REAL] ==

[OFF_REAL] == ' [OFF REAL] ==
[OFF REAL] == 1] (i [OFF REAL] ==

Control Flow Graph Recovery:

* State variable Heuristic: most-accessed memory location

* Basic Blocks Solve on state variable

e (Un)conditional Jumps Value Set Analysis of assignment to state variable

Evaluation

CONTROL FLOW LINEARIZATION

* Deobfuscation evaluation target: MOVfuscator

e Applying angr symbolic execution engine to reference binary [19]:

Original Movfuscated Demovfuscated

Number of Basic Blocks Executed 37 99,999 87
Analysis Time (s) 5.1 17.9
Explored Paths 2 1 3

Executable Size (bytes) 5400 5,962,776 5,962,776

Malicious Software

/

Hides Behaviour

\

Split Personality
Malware

Part B

ISpIi’r Personality Malware

,,[What is] colloquially known as split personality disorder,
is a mental disorder characterized by the maintenance of at
least two distinct and relatively enduring personality states.”

* Malware: Hindering Dynamic Binary Analysis

(debugger detected()) {
do something unsuspicious();

{

encrypt files();

Intfroduction & Motivation

DYNAMIC BINARY INSTRUMENTATION

* Add codetobinary applicationat Shared Address Space
specific points during execution. [16] 5 U
nalysis Code
e Components:
° 1 .
Analys?s Target 5 | |Pin
* Analysis Code E Code Cache
DBI Framework ES JIT Compiler P~ | Instrumented
. .] g Target
* Security requirements to guarantee <

reliable dynamic analysis [17, 20]:
e S1 Interposition S3Isolation
* 52 Inspection * 54 Transparency

Intfroduction & Motivation

DYNAMIC BINARY INSTRUMENTATION

Research Question Il

What guarantees on transparency, isolation,
interposition, and inspection are provided
by current dynamic binary instrumentation
tools?

IBreaking Transparency

DYNAMIC BINARY INSTRUMENTATION

.

e Idea: Modern x86-64 CPUs are complex. a o 3
How well does Pin handle corner cases? S <
Corner Case Description S1 S2 S3
syscall instruction Does not update to rcx register

rdfsbase instruction Returns Pin TLS instead of guest TLS
fxsave instruction [18] Does not mask original rip
Self-Modifying Code De-synchronizes code cache
No-execute Bit Ignored (!)

NN N N N
NN N N N
N NI NI NI N

HKHX XX (g TRANSPARENCY

IBreaking Isolation

DYNAMIC BINARY INSTRUMENTATION

e Determine code cache location using (1) % é z :zJ
e Overwrite cached code and transfer control using (2) + (3) 5 o < 5
> 2 3 ¢
Corner Case Description S1 S2 S3 S4
syscall instruction Does not update to rcx register I
rdfsbase instruction ~ Returns Pin TLS instead of guest TLS ? 2?72 X
(1) fxsave instruction [18] Does not mask original rip [¢
(2) Self-Modifying Code De-synchronizes code cache 27 X
2 7 X

(3) No-execute Bit Ignored (!)

Breaking Isolation

DYNAMIC BINARY INSTRUMENTATION

get real rip: ; (1) fxsave method to obtain address
fldz ; of fldz instruction in code cache
fxsave [rax]
mov rax, [rax+8]
ret
break isolation:
call get real rip ; rax = code cache location
lea rdi, [rel escaped] ; rdi = address of escaped@.text
mov word [rax], ; (2) write into cache
mov qword [rax+2], rdi ; movabs rax, <address of escaped>
mov word [rax+10], : jmp rax
call get real rip ; call modified get real rip
escaped:
nop

1
2
3
4
5
6
7
8
9

Breaking Isolation

DYNAMIC BINARY INSTRUMENTATION

1 get real rip: ; (3) modified function in code
movabs rax, &escaped ; cache transfers control to
jmp rax ; escaped@. text

break isolation:
call get real rip ; rax = code cache location
lea rdi, [rel escaped] ; rdi = address of escaped@.text
mov word [rax], ; (2) write into cache
mov qword [rax+2], rdi ; movabs rax, <address of escaped>
mov word [rax+10], : jmp rax
call get real rip ; call modified get real rip
escaped:
nop ; this code executes outside the
instrumentation vm

IBreaking Interposition & Inspection

DYNAMIC BINARY INSTRUMENTATION

O %

e Shared address space implies that breaking isolation also % o6z Z

breaks inspection and interposition. c T3
Corner Case Description S1 S2 S3 $4
syscall instruction Does not update to rcx register X
rdfsbase instruction Returns Pin TLS instead of guest TLS X
fxsave instruction [18] Does not mask original rip X X X X
Self-Modifying Code De-synchronizes code cache X X X X
No-execute Bit Ignored (!) X X X X

Malicious Software

\

Attacks System

\

Armed
Malware

Part C

Intfroduction & Motivation

ARMED MALWARE

Exploit Mitigation Mechanism Software Project Year
Stack Protector gCC 1997
Address Space Layout Randomization Linux (PaX) 2001
Write xor Execute OpenBSD 2003
Relocations Read-Only gCc 2009
SateStack clang 2014
Control Flow Guard Windows 8.1 2015
Control Flow Integrity gCC 2018

Intfroduction & Motivation

ARMED MALWARE

Research Question i

What security guarantees are offered by
current versions of the longest-standing
exploit mitigations in presence of memory
corruption vulnerabilities?

Stack Protector Basic Functionality

SMASHING THE STACK PROTECTOR FOR FUN AND PROFIT

1
P
3
4
5
6
7
8
9

void g(void) {
uint8 t buf[16];
/* function body of g */

’

}

void f(void) {
uint64 t a;
uinto4 t b;
/* function body of f */

Overflow direction

Stack growth

buf

canary

fptr

ret

d

b

fptr

ret

1. Place canary on entry
~—

reference

2. canary on exit

3. Terminate program
if corrupted canary
is detected

Ildeal Stack Protector Properties

SMASHING THE STACK PROTECTOR FOR FUN AND PROFIT

¢ ’1 Re-randomization of canary value buf
e per-process, per-thread, per-function reference| § canary
. El |
e P2 reference value stored in read / only memory || & fptr
far away from architectural stack E = | ret
. L ~ a
e P3 Immediate program termination on detected e -
- =+
. VIl
canary value corruption E fotr
= Measure properties across different combinations ret

of hardware and operating systems

State of the Stack Protector

SMASHING THE STACK PROTECTOR FOR FUN AND PROFIT

e P1 Re-randomization:

e Windows: per-function canary

e All others: per-process canary randomization, constant across fork()
e P2 Storage location of reference value:

e v Safeimplementations

o © Weak implementations

o X Vulnerable implementations
e P3 Immediate termination:

e Linux + glibc: Read attacker controlled values from memory
e All others terminate the program safely

State of the Stack Protector

SMASHING THE STACK PROTECTOR FOR FUN AND PROFIT

Stack TLS Global Dyn.
Operating System CPU Arch. CLibrary M S M S M S M S
Android 7.0 ARMv7 Bionic v v v v v v vV
Android 7.0 x86-64 Bionic v X v v v v v v
macOS 10.12.1 x86-64 libSystem v v v v v v v v
FreeBSD 11.00 x86-64 libc.so.7 v v v v @ v v
OpenBSD 6.0 x86-64 libcso.880 v v - - v v v v
Windows 10 x86 msverld00 v v v v © © v v
Windows 10 x86-64 msverl400 v v v v © © v v
Windows 7 x86 msverl4d00 v v v v © © v v
Windows 7 x86-64 msverl400 v v v v O © s v

State of the Stack Protector

SMASHING THE STACK PROTECTOR FOR FUN AND PROFIT

Stack TLS Global Dyn.
Operating System CPU Arch. CLibrary M S M S M S M S
Arch Linux x86-64 libc-2.26.s0 v X © © v v v v
Debian Jessie x86 libc-219s0 v X © © v v v v
Debian Jessie ARMv7 libc-2.19s0 v v v v © © v v
Debian Jessie PowerPC libc-219s0 v X © © v v v v
Debian Jessie s390x libc-219.s0 v X © © v v v v
Debian Stretch x86-64 diet033 X X © © «+» v v ©
Debian Stretch x86-64 musl1.1.16 v+ X © & © + © v
Ubuntu 14.04 LTS x86-64 eglibc215 v X © & v v v v

IAddress Space Layout Randomization

DYNAMIC LOADER ORIENTED PROGRAMMING ON LINUX

e Address Space Layout Randomization (ASLR) [ERSIHREISIERNSVEEE

L. . . 62c02ae5a000

makes absolute position of objects in memory $ cat /proc/self/maps
5b57a714d000

unknown. $ cat /proc/self/maps
55c5bcf9d000

* Idea: Measure relative positions of objects in $ cat /proc/self/maps
64760e613000

memory among each other. $ cat /proc/self/maps

5b49c20df000

$ cat /proc/self/maps
5c96974c8000
$ cat /proc/self/maps
5dda53031000
$ cat /proc/self/maps
64d2elf71000

DYNAMIC LOADER ORIENTED PROGRAMMING ON LINUX

IAddress Space Layout Randomization

> a o
wWww o o o =
NNy b — B
. . . L L L A NANANANAANNAXAm—O
* Relative distancing of memory S PRRE NENREEIrE
FENFEREEEEEER B R
mappings with full ASLR on Linux cannacannsannnanse
ieeelleelelezselll
e Which mappings contain writable s ce rxp helper
. R Main ELF Data r--p helper
function pointers that get Main ELF Data ru-p helper
Dynamic Memory (Small) rw-p [heap]
M : Dynamic Memory (Large) rw-p <anon>
dispatched reliably?
Library Data r--p libc-2.25.s0
Library Data rw-p libc-2.25.s0
Unknown Data rw-p <anon>
[Random Offset, No Mapping Writable Loader Code r-xp 1d-2.25.50
. . Thread Local Storage rw-p <anon>
[0 Random Offset, =1 Mapping Writable Loader Data r--p 1d-2.25.s0
. . Loader Data rw-p 1d-2.25.so
[] Constant Offset, No Mapping Writable Unknown Dats rw-p <anons
. . Program Stack, Function Local Variables rw-p [stack]
B Constant Offset, 1 Mapping Writable System Call Emulation Related Data r--p [var]
. . System Call Emulation Related Code r-xp [vdso]
. ConStant Offset’ >1 Mapplng ertable System Call Emulation Related Code< r-xp [vsyscall]

DYNAMIC LOADER ORIENTED PROGRAMMING ON LINUX

Ilden’rifying Attack Targets

e Record instruction trace of most basic interaction of user
binary with standard runtime: Process Termination

e Perform taint analysis to determine extended is-writable-
property on dispatched code pointers:
e writable code pointers (direct)
* operations applying writable operands to code
pointers (indirect)

DYNAMIC LOADER ORIENTED PROGRAMMING ON LINUX

IThe Wiedergidnger Attack

* In presence of unbound array access vulnerability:

int main(int argc, char **argv) {
/* Exemplary initialization */
uint8 t *array = malloc();
size t idx = 0, val = 0;

(scanf("%zu %zu", &idx, &val)
array[idx] = val;

0;

1
2
3
4
5
§)
7
8
9
0]
1

1
1

-

= Full ASLR bypass via corrupted structures in dynamic loader on Linux

Control Flow Linearization

CONCLUSION

e CFL incurs significant performance overhead.

* CFL effectively breaks symbolic execution.

e Control flow can be recovered by our algorithm.

e Implementation of the algorithm targeting MOVfuscator.

- Apply CFL selectively to algorithmic core only.

IDynamic Binary Instrumentation

CONCLUSION

* Pin fails to provide transparency, isolation, inspection,
interposition guarantees Shared Address Space
= Pin is unsuitable for analysis of untrusted code

Analysis Code

* We escalated a DoS bug in wget to full code — —
execution when instrumented '

= Instrumented code is less secure against
exploitation

- Pin is unsuitable to enhance binary production
code

Code Cache

= JIT Compiler |> Instrumented
Target

IExploi’r Mitigations on Linux

CONCLUSION

* Weak stack canary implementations on Linux:
e No re-randomization of canary value when forking a new process,

starting a thread or entering a function
= Stack Canaries in forking software can easily be bypassed

* Reference value is placed in writable memory next to stack
- Stack Canaries in threading software can trivially be bypassed

e ASLR on Linux places memory segments at fixed relative distances
e Control structures of dynamic loader can be corrupted
= Full ASLR bypass possible for unbound array access vulnerabilities

Outlook

FUTURE WORK

e More formal methods for low-level computer
security topics

e Strong(er?) transparency of dynamic binary
analysis

e Introduction of hardened implementations of
ASLR & stack protector for Linux+glibc

Questions?

HHOMWEH)TITVET,

Shared Address Space

Analysis Code

i v

Pin

—-(JIT Compiler

Analysis Target

Code Cache

Instrumented
Target

reference

Overflow direction

Stack growth

buf

canary

fptr

ret

a

b

fptr

ret

o o o

n n n

« e e o o o —_

0 W 7] n o —

N NN . co. —

e . 0 n —_ @©
L L L ANNNANANNAX——O
v OO Qc | 1 I - Cc -+ C O - 00
2 00 ® 0 000 o0oN ONNIO®@®G O >
- 0o caoo0aoc 1 C I I C ¥ >T O
Q9 c @©HHH ©T ©T T © O > > >
L C—VrHAMHAMHAVMHVAMA V———e—
aaoaoaa [N = R = R o R = A = R = R = A - - -
F S T T T e T T = e T e e R -+
22200221 2002221 010
U S i e e U S e N S U e e e

Main ELF Code’

Main ELF Data

Main ELF Data

Dynamic Memory (Small)

Dynamic Memory (Large)

Unknown Data

Program Stack, Function Local Variables

System Call Emulation Related Data

System Call Emulation Related Code

System Call Emulation Related Code<

r-xp
r--p
rw-p
rw-p
rw-p
r-xp
r--p
rw-p
rw-p
r-xp
rw-p
r--p
rw-p
rw-p
rw-p
r--p
r-xp
r-xp

helper
helper
helper
[heap]
<anon>
libc-2.25.s0
libc-2.25.s0
libc-2.25.s0
<anon>
1d-2.25.s0
<anon>
1d-2.25.s0
1d-2.25.s0
<anon>
[stack]
[vvar]
[vdso]
[vsyscall]

References

FOR FULL REFERENCE LIST, SEE THESIS

® [1] Pascal Junod et al. - Obfuscator-LLVM — Software Protection for the Masses

" [2] Sudeep Ghosh et al. - Matryoshka: Strengthening Software Protection via Nested
Virtual Machines

* [3] Yongxin Zhou et al. - Information Hiding in Software with Mixed Boolean-Arith-
metic Transforms

* [4] Stephen Dolan - Mov is Turing-Complete
= [5] Christopher Domas - The MOVfuscator

References

FOR FULL REFERENCE LIST, SEE THESIS

* [6] Adrien Guinet et al. - Arybo: Manipulation, Canonicalization and Identification of
Mixed Boolean-Arithmetic Symbolic Expressions
* [7] Binbin Liu et al. - MBA-Blast: Onveiling and Simplifying Mixed Boolean-Arith-
metic Obfuscation
€ [8] Henry Warren - Hacker’s Delight
* [9] Yan Shoshitaishvili et al. - Firmalice — Automatic Detection of Authentication By-

pass Vulnerabilities in Binary Firmware

References

FOR FULL REFERENCE LIST, SEE THESIS

" [10] ESET Research Laboratories - Stadeo — Stantinko Botnet Analysis Tools

" [11] Sophos Research Laboratories - Attacking Emotet’s Control Flow Flattening
2 Rolph Rolles - Deobfuscating VMProtect

" [13] Babak Yadegari et al. - A Generic Approach to Automatic Deobfuscation of

Executable Code
® [14] Peter Nordin et al. Evolving Turing-Complete Programs for a Register Machine

with Self-modifying Code

References

FOR FULL REFERENCE LIST, SEE THESIS

® [15] Davide Balzarotti et al. - Efficient Detection of Split Personalities in Malware
" [16] Chi-Keung Luk et al. - Pin: Building Customized Program Analysis Tools with

Dynamic Instrumentation

® [17] Tal Garfinkel et al. - A Virtual Machine Introspection Based Architecture for In-

trusion Detection

® [18] Francisco Falcén et al. Dynamic Binary Instrumentation Frameworks: I know

youre there spying on me

References

FOR FULL REFERENCE LIST, SEE THESIS

* [19] Yan Shoshitaishvili et al. - Firmalice — Automatic Detection of Authentication
Bypass Vulnerabilities in Binary Firmware
® [20] Tamas Lengyel et al. - Scalability, Fidelity and Stealth in the DRAKVUEF Dy-

namic Malware Analysis System

IBackup Slides

IDynamic Analysis Approaches

DYNAMIC BINARY INSTRUMENTATION

e Security requirements to guarantee reliable analysis [17, 20]:

 S1 Interposition e S3Isolation
e 52 Inspection * 54 Transparency
Dynamic Analysis Interface Detection
Operating System OS Artefacts [15]
System / Process Emulator CPU semantics discrepancies [15]
Virtual Machine Timing Discrepancies/Overhead [15]

Dynamic Binary Instrumentation ?

Data Collection Program

SMASHING THE STACK PROTECTOR FOR FUN AND PROFIT

e P1: Determine canary value
* when spawning a new process.
e when spawning a new thread.
e when entering a new function.

e P2: Simulate buffer overflow from user-controllable
e stack memory A
e thread local storage memory
* global static memory
e dynamically allocated memory

} to reference value.

e P3: Corrupt canary and trace execution flow

IThe Wiederginger Attack

DYNAMIC LOADER ORIENTED PROGRAMMING ON LINUX

Vulnerable Array (rw-) Main ELF

—
@
(]
—
™
8]
~
x
(=)

~

<
<O
=
S
+
.4
A
=
s}
+
wn
g
)
©)

Data of 1d.so (rw-) DT_NEEDED:

DT_INIT:
DT_FINI:
DT_INIT_ARRAY:
DT_INIT_ARRAYSZ:
DT_FINI_ARRAY:
DT_FINI_ARRAYSZ:
DT_GNU_HASH:
DT_STRTAB:
DT_SYMTAB:
DT_STRSZ:
DT_SYMENT:
DT_DEBUG:

0x0

0x120

DT_PLTGOT:
DT_PLTRELSZ:

2022-09-09 MALICIOUS BITS AND HOW TO FIGHT THEM

Shared library

0x528

0x774

0x200de8

8 Bytes

0x200df0

8 Bytes

0x555555554298

0x555555554378

0x5555555542b8

0x8b

0x18

0x7f3aad48e140 (ld.so:_r_debug=
=1d.s0+0x225140=11ibc.s0+0x5c2140)
0x555555755000 Possible due to
6x30 Constant Offset

46

IThe Wiederginger Attack

DYNAMIC LOADER ORIENTED PROGRAMMING ON LINUX

Vulnerable Array (rw-) Main ELF

(0x7¢3160)

Constant A of Win-Gadget
Data of 1d.so (rw_) and 1d.so:_r_debug

Constant Distance

DT_NEEDED:
DT_INIT:
DT_FINI:
DT_INIT_ARRAY:
DT_INIT_ARRAYSZ:
DT_FINI_ARRAY:
DT_FINI_ARRAYSZ:
DT_GNU_HASH:
DT_STRTAB:
DT_SYMTAB:
DT_STRSZ:
DT_SYMENT:
DT_DEBUG:

0x0

0x120

DT_PLTGOT:
DT_PLTRELSZ:

2022-09-09 MALICIOUS BITS AND HOW TO FIGHT THEM

Shared library

0x528

0x774

0x200de8

8 Bytes

0x200df0

8 Bytes

0x555555554298

0x555555554378

0x5555555542b8

0x8b

0x18

0x7f3aad48e140 (ld.so:_r_debug=
=1d.s0+0x225140=11ibc.so0+0x5c2140)
0x555555755000 Possible due to

0x30 Constant Offset

47

