
PwIN - Pwning Intel piN
Why DBI is unsuitable for security applications

J. Kirsch, Z. Zhechev, B. Bierbaumer, and T. Kittel

Technical University of Munich, Germany
[kirschju|zhechev|bierbaumer|kittel]@sec.in.tum.de

Abstract. Binary instrumentation is a robust and powerful technique
which facilitates binary code modification of computer programs even
when no source code is available. This is achieved either statically by
rewriting the binary instructions of the program and then executing the
altered program or dynamically, by changing the code at run-time right
before it is executed. The design of most Dynamic Binary Instrumenta-
tion (DBI) frameworks puts emphasis on ease-of-use, portability, and effi-
ciency, offering the possibility to execute inspecting analysis code from an
interpositioned perspective maintaining full access to the instrumented
program. This has established DBI as a powerful tool utilized for analysis
tasks such as profiling, performance evaluation, and prototyping.
The interest of employing DBI tools for binary hardening techniques
(e.g. Program Shepherding) and malware analysis is constantly increas-
ing among researchers. However, the usage of DBI for security related
tasks is questionable, as in such scenarios it is important that analysis
code runs isolated from the instrumented program in a stealthy way.
In this paper, we show (1) that a plethora of literature implicitly seems
to assume isolation and stealthiness of DBI frameworks and strongly
challenge these assumptions. We use Intel Pin running on x86-64 Linux
as an example to show that assuming a program is running in context of
a DBI framework (2) the presence thereof can be detected, (3) policies
introduced by binary hardening mechanisms can be subverted, and (4)
otherwise hard-to-exploit bugs can be escalated to full code execution.

Keywords: Dynamic Binary Instrumentation · Intel PIN · Control Flow
Integrity · Program Shepherding · Virtual Machine Escape · Exploitation

1 Introduction

Malware continues to be a still-growing cyber security threat even nowadays. In
the early days of the Internet malware was developed for mainly experimental
reasons [30]. However, in recent years we are witnesses of malware utilized for
theft of confidential data, denial-of-service of commercial systems, or even black-
mailing and cyber espionage. Industry and academia are constantly striving to
develop countermeasures against these threats in form of advanced malware
detection approaches. However, malware developers continue to become more
creative in their attempt to hinder the analysis of malware samples. Dynamic

2 Kirsch, Zhechev, Bierbaumer, Kittel

Binary Instrumentation (DBI) can help analysts to inspect applications’ char-
acteristics or alter their functionalities even when no source code is available.
Therefore, DBI is easily employed as a malware analysis tool where existence of
anti-analysis techniques and the absence of source code are very common.

Similarly, computer systems are often subject to external attacks that aim
to gain control over their functionality by leveraging malicious inputs. Such at-
tacks attempt to trigger existing programming mistakes in software, such as
memory corruption bugs to subvert execution. DBI frameworks provide a possi-
bility to conveniently add new functionalities to existing binaries, thus rendering
these frameworks useful to harden software. One peculiarity illustrating this ap-
proach is program shepherding [17]—a technique that involves monitoring of all
control transfers to ensure that each satisfies a given security policy, such as
restricted code origins and controlling return targets. According to the program
shepherding ’s paradigms this is only possible because the hardened application
is executed in the context of a DBI framework. A typical example of program
shepherding is the implementation of Control Flow Integrity (CFI) policies using
DBI to operate on Commercial off-the-shelf (COTS) binaries.

In this work we challenge both scenarios painted above. We argue that the
original intent driving the motivation to build DBI frameworks was the ability
to execute analysis code in a way that interposes execution of the instrumented
program, i. e. analysis code can subscribe to be notified of any occurring event
taking place in context of the instrumented program. Furthermore, an important
design goal of DBI was to equip analysis code with full inspection capabilities
covering the complete memory state of the target. In practice this is typically
achieved by introducing a single address space for both, analysis code and in-
strumented program.

This key observation is the main motivation behind our research. We show
that due to the shared memory model, DBI frameworks in their current state
are inherently incapable of providing neither stealthiness of the analysis code nor
isolation of the analysis code against manipulations the instrumented target. In
our opinion, this conceptionally renders them unsuitable for any security related
application.

In a nutshell, this paper makes the following contributions:

Relevance We identify DBI to be a common instrument for security-related
tasks such as malware analysis and application hardening in literature.

Detectability We demonstrate that it is trivial for an application to detect
whether it is running in context of a DBI framework, enabling malicious
software to behave in different ways during analysis.

Escapability We attest that a malicious application can break out of the instru-
mentation engine and execute arbitrary code outside of the DBI framework.

Increased Attack Surface We argue that counter-intuitively instead of in-
creasing security by introducing DBI based software hardening measures,
DBI actually decreases the overall security by escalating an otherwise hard-
to-exploit real world bugs into full code execution.

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 3

2 Background & Related Work

In this chapter we discuss background about essential characteristics of DBI in
general, introduce a consistent taxonomy used throughout this work, and discuss
the usage of DBI frameworks for security in academic literature.

2.1 Dynamic Binary Instrumentation

A typical DBI framework consists of three components in a single address space:

1. The compiled target program which functionality should be altered
2. The functionality that is to be added to the target program
3. The DBI platform injecting the instrumentation plugin into the instrumented

binary and ensuring proper execution

Implementers typically develop their own analysis plugins which the instru-
mentation platform injects into the binary code of an application (instrumented
application) that should be analyzed. The instrumentation platform exposes
an API that enables the analysis plugin to register callbacks for certain events
happening during the execution of the instrumented application. For example, it
might be desirable for an analysis plugin implementing a shadow stack to receive
a callback whenever the instrumented application tries to execute a call or ret
instruction (interposition). Once the analysis plugin is notified (synchronously)
of the execution of such an instruction, it may now freely inspect or modify all
register and memory contents of the instrumented application (inspection).

2.2 Required Security Properties of Analysis Frameworks

In context of this work, we follow the taxonomy of Garfinkel et al. [14] to outline
key requirements that any dynamic analysis framework needs to fulfill. We use
this work, as within DBI the analysis plugin is accordingly referenced as Vir-
tual Machine (VM). In accordance to this work, we introduce analysis plugin
and the instrumentation platform to form the analyzing system, as opposed to
the instrumented application which constitutes the analyzed system. Then, the
Garfinkel and Rosenblum taxonomy can be rephrased to DBI tools as follows:

R1 Interposition The analyzing system can subscribe to and is notified of
certain events within the analyzed system. For DBI this means that the in-
strumentation platform stops execution of the instrumented application and
transfers control to the analysis plugin once certain events occur.

R2 Inspection The analyzing system has access to all state of the analyzed
system. Thus, the analyzed system is unable to evade analysis. In context of
our work this implies that the analysis plugin can freely access and modify
all memory and register contents of the instrumented application.

R3 Isolation The analyzed system is unable to tamper with the analyzing sys-
tem or any other analyzed system. This means that instrumentation platform
and analysis plugin have to defend themselves against (malicious) modifica-
tions performed by the instrumented application.

4 Kirsch, Zhechev, Bierbaumer, Kittel

In addition, researchers realized that dynamic analysis systems suitable to
handle malware also need to operate in a way transparent to the analyzed system.
This has the simple reason that so-called split personality malware might evade
dynamic analysis if it is capable of detecting the analysis environment, as for
example pointed out by Lengyel et al. [20]:

R4 Stealthiness The analyzed system is unable to detect if it currently un-
dergoes analysis. This means that the instrumented application must not be
able to infer the presence of the instrumentation platform.

2.3 DBI Use in Literature

There are numerous examples of DBI utilization by not only the research com-
munity but also in commercial software development.

Binary Analysis Many researchers develop DBI tools in order to perform anal-
ysis of binaries, e. g. Salwan et al. developed Triton [29], a concolic execution
framework. Clause et al. [9] implement a dynamic taint analysis tool which sup-
ports data-flow and control-flow based tainting using DBI.

Bug Detection Even in 2018, vulnerabilities resulting from memory corruption
bugs [25] are still problematic. Many researchers implement vulnerability de-
tection and prevention tools using DBI to limit the potential damage. This is
the case because DBI provides them the advantage that custom security code
may be directly executed within the analyzed/hardened program. The Valgrind
distribution includes a lot of other profiling and debugging tools, such as Mem-
check [22] which detects memory-management problems as well as the heap pro-
filer Massif [24]. Similarly, on the Windows family of operating systems (OSs)
Dr. Memory [7] is a memory monitoring tool built on the DynamoRIO frame-
work capable of identifying memory-related programming errors.

Program Shepherding / (CFI) A lot of research is recently conducted regard-
ing program shepherding and CFI which attempts to restrict the set of possible
control-flow transfers to those that are strictly required for correct program ex-
ecution [3]. In order to implement this approach, Davi et al. [10] developed a
Pintool that dynamically enforces sanitizing return address checks by employing
a shadow stack at run-time. While the idea of a shadow stack is much older [8,33],
the advantage of this approach was the ease of development of the dynamic secu-
rity enforcement tool. A similar approach was chosen by van der Veen et al. who
developed a Linux kernel module together with a Dyninst plugin [32] which deter-
mine and restrict the valid execution paths and thereby ensure correct program
execution. Instead of verifying the return address’s validity, Tymburibá et al. [31]
in contrast try to utilize return-oriented programming (ROP) gadgets’ charac-
teristics in order to prevent the hijacking of program’s execution flow. In their
Pintool called RipRop they detect unusually high rates of successive indirect
branches during the execution of unusually short basic blocks, which may be an

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 5

indication of a undergoing ROP attack. Later, in the same year Follner et al.
present ROPocop [12], another Code-Reuse Attack (CRA) detection framework
targeted at Windows x86 binaries. It combines the idea of Tymburibá et al. to-
gether with a custom shadow stack and a technique which ensures no data is
unintentionally executed. Yet another example of a Pintool utilized in ROP at-
tack detection was proposed by Elsabagh et al.. Their tool EigenROP attempts
to detect anomalies in the execution process [11], due to execution of ROP gad-
gets, based on directional statistics and program’s own characteristics. Finally,
Qiang et al. built a fully context-sensitive CFI tool [27] on top of Pin that may
be used to protect COTS binaries. Among other advantages the tool checks the
execution path instead of checking each edge in this execution path one by one
which helps accelerate the process.

Malware Analysis In addition, many security analysts employ DBI tools to study
and profile malicious programs’ behavior. Both to harden productive applications
as well as to understand and reverse engineer potentially malicious program func-
tionality in a sandbox environment. For instance, Gröbert et al. take advantage
of a Pintool to generate execution traces and apply several heuristics to auto-
mate the identification of cryptographic primitives [15] in malicious samples.
Kulakov developed a Pintool which performs static malware analysis in order to
generate a loose timeline of the whole execution [19]. Additionally, he created an
IDA plugin for better visualization of the data. Banescu et al. [4] proposed an
empirical framework which is able to behaviorally obfuscate standard malware
binaries. Program’s observable behavior or path is defined by all internal com-
putations and the sequence of accomplished system calls during its execution.
In order to obfuscate malware samples, Banescu et al. [4] implemented a Pintool
which inserts and reorders system calls into the binary without modifying its
functionality, but altering its known observable behavior.

Note that for the latter two of these domains, both Isolation and Stealthiness
is a fundamental requirement to provide the proposed security guarantees.

2.4 Scope

To our perception, the most prominent examples of DBI frameworks nowadays
are Intel Pin [21], Dyninst [5], Valgrind [23], DynamoRIO [6] and (more recently)
QBDI [2] and Skorpio [28]. In the following, we focused (almost exclusively) on
Intel Pin version 3.5 in Just-In-Time (JIT) mode on Linux while checking our
results also against other common DBI implementations. We also utilize the,
as the time of writing, latest release of Ubuntu 17.10 (64 bit) so that we can
benefit from the latest security mechanisms, such as for example a higher number
of randomized bits by Address Space Layout Randomization (ASLR)1.

Note that from the previously defined requirements, R1 (Interposition) and
R2 (Inspection) are fundamental features of DBI. In the following sections,
we will challenge the previously defined requirements R3 (Isolation) and R4

1 see /proc/sys/vm/mmap rnd bits

6 Kirsch, Zhechev, Bierbaumer, Kittel

Technique Type Brief Description

envvar EA Checks for Pin specific environment variables on stack
enter CA Checks whether enter instruction is legal and can be executed
fsbase* CA Checks if fsbase value is the same using rdfsbase and prctl

jitbr* CO Detects time overhead when a conditional branch is jitted
jitlib CO Detects jit time overhead when a library is loaded
nx* CA Tries to execute code on a non-executable page
pageperm EA Checks for pages with rwx permissions
mapname EA Checks mapped files’ names for known values (pinbin, vgpreload)
ripfxsave CA Executes fxsave instruction and checks the saved rip value
ripsiginfo* CA Causes an int3 and checks the saved rip value in fpregs

ripsyscall CA Checks whether rip value is saved in rcx after a syscall
smc* CA Check whether self-modifying code is detected by the framework
vmleave EA Checks for code pattern (VMLeave)

Table 1: Description of different DBI detection techniques. An asterisk (*) in
the first column indicates a technique newly discovered during our research. All
other techniques were adopted from their 32 bit versions targeting Windows
presented in [13], except enter which is proposed by Ahmed Bougacha 2.

(Stealthiness) and show that subversion of any thereof consequently also anni-
hilates R1 (Interposition) and R2 (Inspection).

3 Stealthiness

In this section we present several techniques that reliably detect the presence
of different DBI frameworks. To achieve this, we not only adopted several exist-
ing DBI detection techniques [13] to Linux x86-64 but also found new detection
techniques. We group detection techniques in three categories; (1) code cache /
instrumentation artifacts (CA), (2) JIT compiler overhead (CO), and (3) run-
time environment artifacts (EA). In this paper we only describe techniques from
categories (1) and (3) in detail. While we explain these techniques on Pin, we
found them also applicable to other DBI implementations.

We have implemented a tool called jitmenot which employs 13 different DBI
detection mechanisms summarized in Table 1, 8 of which were adopted from their
Windows specific 32 bit counterparts presented elsewhere [13]. In the following,
we describe only the most prominent examples for space reasons. Our testing
tool jitmenot is released under an open-source license and can be downloaded
from GitHub. See Table 2 for an overview of which detection technique is able
to detect which of the analyzed DBI frameworks.

2 http://repzret.org/p/detecting-valgrind/

http://repzret.org/p/detecting-valgrind/

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 7

Technique Type Pin Valgrind DynamoRIO QBDI

jitbr CO E E E 7

jitlib CO E E E 7

pageperm EA E E E E
vmleave EA E 7 7 E
mapname EA E E E 7

smc CA E E 7 E
ripfxsave CA E E 7 E
ripsiginfo CA E E E E
ripsyscall CA E 7 E E
nx CA E E E E
envvar EA E E E 7

fsbase CA E – E 7

enter CA 7 E 7 7

Table 2: Evaluation of detection mechanisms on different DBI frameworks.

3.1 Code Cache / Instrumentation Artifacts

In the first category – code cache artifacts – we include anomalies introduced by
the fact that the executed code is not the original one.

Abusing the syscall instruction (ripsyscall) Independent of Pin, when
executing any system call via the syscall instruction the current instruction
pointer value is copied to the rcx register [16], such that the kernel can restore
execution correctly via the sysret instruction. As operation of the OS’s ker-
nel happens transparently, user land perceives the syscall instruction to have
the side effect of setting the rcx register to the instruction right behind the
syscall. The first method involves the way the DBI frameworks emulate sys-
tem calls. For example, when Pin has to accomplish some task outside of the
VM, such as forwarding a system call request from the instrumented application
or determining the next instruction trace to execute, the register state of the
instrumented application is saved and the VM is left.

However, this is not the case for an instrumented application executed within
DBI. Since, DBI frameworks wrap all system calls performed by the instrumented
application, they need to save the program’s register state before switching from
the context of the instrumented application to its own internal state. When
re-entering the context of the instrumented application, apart from the syscall
result in rax, no other side effects are propagated back to the program. As a
result, the rcx register observed by the instrumented application stays constant
across system calls. This discrepancy can be used as a detection mechanism.

Self-Modifying Code (smc) Yet another code cache artifact involves the way
DBI frameworks handle Self-Modifying Code (SMC) together with the fact that
instrumentation is done at basic block granularity. According to Intel, the Pin

8 Kirsch, Zhechev, Bierbaumer, Kittel

framework, for example, does attempt to detect manipulations of the original
code of the instrumented application by exposing the PIN SetSmcSupport config-
uration option and a corresponding callback function TRACE AddSmcDetected-

Function. However, the analysis plugin programmer has to manually trigger
code cache invalidation upon receiving a SMC notification to re-trigger the JIT
compiler for the altered code. If the analysis plugin programmer does not han-
dle SMC, or does not invalidate the code cache, the instrumented application
could detect the presence of Pin as follows: First, the instrumented application
marks its own code as readable, writeable and executable. Then the malicious
tool modifies the immediate operand of a mov instruction from I0 to I1. Since
Pin does not automatically invalidate the code cache only the original code is
modified, resulting in mov ending up with immediate operand I0. If the same se-
quence is executed outside of a instrumentation platform, the code change takes
effect immediately and the mov instruction will use I1 as immediate operand.
Only if the analysis plugin monitors all write accesses of the application to its
own text segment it can reliably detect SMC. Furthermore, a code cache inval-
idation request after every write (incurring performance overhead) is needed to
prevent the attack sketched above.

Wrong emulation of enter instruction (enter) Some DBI frameworks, such
as Valgrind, first translate the program into a processor-neutral Intermediate
Representation (IR), which is then instrumented by the analysis plugin and
in the end compiled to machine code. This implies that the DBI framework
is capable of emulating the whole instruction set of the processor. However,
since some instructions are less frequently used than others, DBI developers
choose to either partially or completely not support them. An example of such
an instruction is the x86 enter instruction [16], which creates a stack frame
for a procedure. This instruction executes as expected in a non-instrumented
environment. However, when a program, instrumented by Valgrind, attempts
to execute enter, a signal is raised because this particular instruction is not
implemented in the IR. By catching this signal, an application can determine
whether it is instrumented or not. Note that this behavior is not observed in
Intel Pin since it does not rely on IR for instrumentation.

Neglecting NX bit (nx) W⊕X is an exploitation mitigation technique enabling
the OS to mark writable pages in memory as not executable. The consistent ap-
plication of W⊕X denies an attacker the ability to introduce own code into the
address space of a program before transferring the execution flow to it. However,
when the JIT compiler of a DBI framework fetches new instructions for instru-
mentation, it does not check whether the source memory is marked as executable;
as long as the page is readable the JIT compiler will translate any data present
and emit executable assembly instructions. Note that all DBI frameworks we
tested were vulnerable to this problem. Clearly, this is a huge security issue, as
this implies that any program instrumented by a DBI framework effectively
has W⊕X disabled. We utilized this fact as a detection technique in the fol-

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 9

lowing way: (1) Allocate a new page on the heap without execute permissions
and place valid code in it, (2) then execute it. Without instrumentation, on any
modern OS, a program trying to execute code on a page without x permissions
will result in a crash. Otherwise, if the program is being instrumented, the pro-
gram will be allowed to continue. This difference allows us to determine whether
an application is currently instrumented or not.

Therefore, if it is possible to divert execution to a user-controllable buffer,
an attacker can place shellcode in it and the VM will execute it. This effectively
violates the Isolation property of DBI. Later, we present a real-world example of
how this can be leveraged as a fully working exploit. This classifies as a major
vulnerability issue not only in Pin DBI framework but also in all other DBI
engines which we tested as can be seen in Table 2. Nevertheless, introducing
proper checks for correct memory page permissions before fetching code from
memory could resolve this issue. This can be accomplished either in the JIT
compiler or as a temporary fix integrated in the instrumentation platforms.

Real Instruction Pointer (ripfxsave / ripsiginfo) This technique was
already introduced by Falcón and Riva [13]. However, as detection of the real
rip also is a building block for attacks (against the DBI Isolation property)
described later in this paper, we briefly summarize the techniques nevertheless.

In a nutshell, the DBI framework VMs execute only the translated and instru-
mented code of the application residing in the code cache but never the original
code in the original text segment of the instrumented application. To maintain
compatibility with non-relocatable applications, Pin attempts to mask the VM’s
rip with instrumented program’s original rip value whenever necessary.

One technique for finding the real rip abuses the systems Floating Point
Unit (FPU): First, any FPU instruction (e. g. fldz) is executed. Afterwards,
the FPU state is saved using the fxsave instruction. This state includes the
address of the most recently executed FPU instruction, which is not masked by
any instrumentation platform. A malicious instrumented application can then
compare this value to the (masked) value when directly reading the rip register.
If the values do not match, the application is being instrumented.

The same can be achieved on Linux with the help of the OS: The sigaction

system call allows the calling process to examine and/or specify the action to be
associated with a specific signal. When configured, the OS provides information
about the context at the time the signal occurred. If we execute any floating-point
instruction and then initiate a signal (for instance by deliberately triggering a
segmentation fault), the context argument passed to the signal handler contains
the state of the FPU registers. By comparing these values with the corresponding
rip, one can again determine whether the program is being instrumented.

3.2 Environment Artifacts

In this section we identify environmental artifacts introduced by DBI frame-
works. By this we refer to anomalies in the execution environment. For example,

10 Kirsch, Zhechev, Bierbaumer, Kittel

the memory layout varies drastically with the usage of instrumentation plat-
forms. Searching for DBI artifacts such as strings or particular code patterns in
memory reveals the presence of a DBI tool inside the target process memory.

Pin Internal Environment Variables Firstly, Pin expects certain environ-
ment variables in order to run properly (e.g. PIN INJECTOR64 LD LIBRARY PATH).
As the framework spawns the instrumented process as its own child, these inher-
ited environment variables can still be found in the instrumented application’s
memory. Searching for them can therefore expose the underlying JIT engine.

Page Permissions and Code Patterns A side effect of the JIT engine is the
presence of pages that are marked readable, writable, and executable. An at-
tacker can use this knowledge to scan the address space for such pages. Knowing
that rwx memory is not present in a particular binary this discrepancy reveals
the presence of the code cache of the JIT compiler.

Additionally, an attacker can scan the whole memory for mapped pages and
compare names of memory mapped files with names related to the DBI frame-
work (e. g. pinbin for Pin). Moreover, as the instrumented application and the
analysis plugin share one address space, the full implementation of the instru-
mentation platform has to be present as well. For example, an attacker can search
for specific code patterns such as the characteristic implementation of the tran-
sition between the instrumented application and the analysis plugin (VMLeave).
This code sequence is unique because it saves the current VM context on the
stack and restores the jitted application’s registers, generating assembly code
that can easily be recognized.

3.3 Summary

As one can see, a instrumented application can notice whether it is currently
being executed in a DBI environment. By nature, JIT compilers cause a lot of
noise which is not only hard to disguise but trying to do so introduces even more
irregularities in the instrumented program execution Polino et al. [26]. As such
the requirement R4 (Stealthiness) which is essential for security applications
such as malware analysis cannot be hold by DBI frameworks.

4 Isolation

After discussing detectability of DBI frameworks, the following section focuses on
the methods and possibilities to escape from and consequently evade the instru-
mentation. In the original work describing Pin [21] in Section 3.3.1 the authors
state that the instrumented application’s code is never executed—instead it is
compiled (from machine instructions to the same kind of machine instructions)
and executed together with the analysis plugin’s procedures within a custom vir-
tual environment (the Pin VM). All executed machine instructions reside in the

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 11

VM (code cache) and the effect of any instruction cannot escape from the VM re-
gion. Like other VMs, the Pin framework manages the instrumented program’s
instruction pointer and translates each basic block of the original code lazily
(i. e. when necessary). Two properties make Pin subject to attacks compromis-
ing isolation: First, the VM may and will reuse already compiled code because
of optimization benefits. Second, Pin does not employ any integrity checking of
already translated instructions in the code cache. Therefore, we can alter already
executed instructions in memory, as they (comfortably) reside on pages marked
rwx by the VM. Experimental evidence from Section 3 indicates that the code
cache implemented by other DBI tools behaves in accordance with Pin’s code
cache. However, we target the DBI implementation of Pin on x86-64 Linux in
the following sections.

For this we distinguish two different attacker models, and describe an escap-
ing mechanism suitable for each.

A1 Control of Code and Data This is the most potent attacker. She can
freely specify which code is executed in the instrumented application and is
able to freely interact with the application while instrumented. In reality,
such an attacker would craft a malicious binary in the hope that an analyst
would execute the binary in a instrumentation platform.

A2 Control of only Data This is the weaker of the two attacker models. In
this case, an attacker only posses copies of the instrumented application,
instrumentation platform, analysis plugin, and all depending dynamic li-
braries. However, this attacker is also able to freely interact with the ap-
plication containing memory corruption vulnerabilities while executed in an
DBI framework. In practice this is the case when some binary hardening
policy implemented using DBI gets attacked over the network.

While detectability always required an attacker of type A1, we show that it
is even possible for an attacker of type A2 to escape from the instrumentation if
the attacked program contains what is commonly referred to as a write-where-
what vulnerability.

4.1 Escaping from Pin’s Instrumentation using Direct Code Cache
Modification

First, we describe the escaping technique for the more potent attacker A1 whose
goal is to execute arbitrary code without Pin’s instrumentation engine being able
to embed callbacks notifying the analysis plugin. The existence of the just-in-
time compilation allows us to first execute a basic block in order to allow the Pin
VM to translate its assembly code and place its address in an internal hash table
to find it later. Then the instrumented program can find the translated version
of the basic block in the code cache (using the real instruction pointer detection
techniques described in the previous section). It can then modify the JITted
code arbitrarily. Once execution reaches the modified basic block a second time
Pin will effectively execute whatever an attacker placed there. Figure 1 depicts
the steps needed.

12 Kirsch, Zhechev, Bierbaumer, Kittel

<...>
fldz jmp B.0
fxsave [rax]
jmp A.1

A.0

mov [rax+0x8], <code>
jmp VMEnter

A.1

mov rsp, [r15+0x40]
mov rax, [r15+0x3d8]
mov [fs:0x0], rax
jmp C.0

B.0
Code Cache .text Segment

<...>

C.01. 2.

3.

Fig. 1: A minimal program escaping from the Pin VM.

Prior to escaping from the VM, one first has to use one of the techniques to
find the real rip value discussed in section 3 (Block A.0 in Figure 1 showing the
ripfxsave technique). As expected, Pin executes these instructions within its
own code cache. As a result, at the end of block A.0, rax now points to the FPU
context storing a pointer to the beginning of A.0. Then (step 1.), execution is
redirected to block A.1 using a jmp instruction, where an attacker can patch out
the first instruction of A.0 and replace it with a control flow change eventually
reaching B.0 (step 2.). Then, when the control flow reaches A.0 for the second
time, the modified instructions placed there will be executed, now redirecting
execution to block B.0 residing in the original code (step 3.). This does not
trigger any page fault, hence the instrumentation engine does not get notified of
the breach happening in the VM. To maintain ABI compatibility to arbitrary
code embedded into the malicious executable, block B.0 needs to restore the rsp
and fs base registers, which, due to the code generation strategy of the JIT are
conveniently accessible via a structure pointed to by register r15. Now, execution
can move on to any arbitrary code C.0 in the original executable prepared by the
attacker—as all pages are mapped executable there is no mechanism allowing
Pin to re-trigger the JIT to embed its instrumentation hooks. In fact, from Pin’s
perspective the application is still executed in the VM and awaits to regain
control again, which never happens.

4.2 Escaping from Pin’s Instrumentation using an existing memory
corruption

As previously stated, it is under certain circumstances also possible to evade
the instrumentation if only an attacker of type A2 is present. Escaping the Pin
sandbox in Linux without necessarily knowing any code cache address is also
possible: We measured the relative offsets between all mapped pages in different
executions of an application instrumented by Pin. As can be seen in Figure 3 (top
right on page 17), the offset between libc and the code cache, as well as pinbin
(main Pin binary) and Pin’s own stack is constant. Leaking addresses from any
of these code regions therefore allows us to reliably find the other mappings.
Consequently, we can utilize all gadgets present in the code basis to build ROP
chains, or directly write shellcode using a write-what-where vulnerability into the

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 13

code cache. This is due to the fact that, as already explained, the Pin framework
copies itself into the application’s memory by allocating memory using mmap.
As pointed out in earlier work [18], the addresses of consecutively allocated
memory allocations returned by mmap are predictable (i. e.. relative distances
remain constant) in Linux. Thus, all required information can be calculated a
priori based on known binaries of Pin, the analysis plugin, the instrumented
application, and all dynamic link libraries (cf. Figure 3 in the Appendix).

Since Pin does not monitor its code cache for external changes and does not
restrict its execution to known memory locations, one can alter the instrumented
processes memory in any suitable way. Moreover, the address of the code cache
in the Linux version of Pin can be calculated given any leaked address from other
similarly created memory region. For this, if the binary contains a function that
is executed twice after its first invocation, one is able to gain full control over
the application. Unfortunately, such a function (rtld lock default lock) is
contained within the dynamic loader, a core component of the Linux OS.

5 Increased Attack Surface

Previously we have shown that DBI frameworks are both detectable and es-
capable rendering them as not suitable for binary hardening or malware analy-
sis. In this section, we show how implementing security mechanisms enforced by
executing a given COTS binary in a DBI environment even introduces more pos-
sibilities to exploit already present bugs (i.e. attack surface is increased instead
of decreased). To support this claim we discuss an example where a vulnerability
that is not trivial to exploit during normal execution becomes exploitable when
executed within a DBI framework interacting with an attacker of type A2.

5.1 The Return of Aleph One

During the study of detectability properties of instrumentation platform’s we
already pointed out that instrumentation platform’s fail to check the permissions
of the code that is to be processed by their JIT engines. This means any data in
memory can (and will) be translated to executable instructions if reached by the
control flow. This transfers us back to the dawn of buffer overflows and shellcode
execution era. As a simple example we can run an application which jumps to
shellcode on the stack. Normally, because of the set NX bit in the page tables of
the stack, the program would crash as soon as the instruction pointer points to
an address on the stack. However, instrumenting the same binary with Pin does
not crash the application. In fact, the execution continues and opens a shell.

5.2 Turning CVE-2017-13089 to a Code Execution Bug with the
Help of Intel Pin

To underline the exploitability claim, we have implemented a proof of con-
cept binary (PwIN) that exploits an existing CVE vulnerability (CVE-2017-

14 Kirsch, Zhechev, Bierbaumer, Kittel

HTTP/1.1 301 Moved Permanently

Server: nginx/1.4.6 (Ubuntu)

Date: Mon, 30 Oct 2017 01:33:37 GMT

Content-Type: text/html

Content-Length: 193

Set-Cookie: V\xff

Connection: keep-alive

Transfer-Encoding: Chunked

Location: https://pwningse.rv/

-fffffdc6

<shellcode><0x230 bytes padding><BBBBBBBB>\x7c\x9b

RAX 0x0

RBX 0x5555555c71e5 ◂— /* ' [following]' */
RCX 0x7ffff6cb4061 ◂— cmp rax, -0x1000
RDX 0x200

RDI 0x3

RSI 0x7fffffffd150 ◂— <shellcode>
R8 0x7fffffffcfb0 ◂— 0x383
R9 0x0

R10 0x0

R11 0x246

R12 0x5555557ee1b0 ◂— /* 'https://' */
R13 0x7fffffffdf00 ◂— 0x2
R14 0x0

R15 0x0

RBP 0x4242424242424242 /* 'BBBBBBBB' */

RSP 0x7fffffffd368 ◂— 0x55555557f77d9b7c
RIP 0x55555557af7c (skip_short_body+657) ◂— ret

0000 rsp 0x7fffffffd368 —▸ 0x55555557f77d9b7c

0008 0x7fffffffd370 ◂— 'V\xc3\xbf'
0010 0x7fffffffd378 <— 0x555560200

0018 0x7fffffffd380 —▸ 0x7fffffffd7b0 —▸ 0x7fffffffdad0 —▸ ...

0020 0x7fffffffd388 —▸ 0x55555557ec6a (gethttp+3468)

0028 0x7fffffffd390 ◂— 0x0
...

0038 0x7fffffffd3a0 —▸ 0x555555806420 —▸ ...

0040 0x7fffffffd3a8 ◂— 0x0
0048 0x7fffffffd3b0 —▸ 0x7fffffffdd04 ◂— 0x0
0050 0x7fffffffd3b8 —▸ 0x7fffffffd9b0 ◂— 0x0
0058 0x7fffffffd3c0 —▸ 0x555555806810 —▸ ...

...

0068 0x7fffffffd3d0 ◂— 0x0
...

0090 rsp 0x7fffffffd3f8 —▸ 0x7fffffffd370 ◂— 'V\xc3\xbf'
0098 0x7fffffffd400 —▸ 0x555555807fb0 ◂— /* '\nConnect' */

Malicious HTTP Response

Register Contents

Stack State

0x555555579b7c <request_send+881>: add rsp,0x78

0x555555579b80 <request_send+885>: pop rbx

0x555555579b81 <request_send+886>: pop rbp

0x555555579b82 <request_send+887>: ret

0x7fffffffd370 <cookie>: push rsi

0x7fffffffd371 <cookie+1>: ret

0x7fffffffd372 <cookie+2>: mov edi,0x00

Stack Lifting Gadget

Primitive for jmp rsi on the (executable) Stack

Δ = 0x88

1.

2.

3.

4.1

4.2

5.

!

Fig. 2: Control flow and state changes of wget when attacked by a malicious
server. The last control transfers (4.2 in purple and 5. in red) mark the tran-
sitions that are enabled by the usage of Pin. Under normal circumstances, the
program would crash as the buffers on the stack containing the malicious shell-
code would not be executable.

13089, cf. [1]) that is not easily exploited when executed in a normal environ-
ment. CVE-2017-13089 is a bug in wget versions older than 1.19.2 found in
http.c:skip short body(). The bug itself is described in more detail in the
next section. Without Intel Pin the strongest attack (known to us) results in a
1
16 probability of leaking an arbitrary file stored on the victim to the server (see
below). We will discuss how the same bug can be escalated to full code execution
if the victim is instrumented using Intel Pin.

Description of the Bug The vulnerable function in wget is called when pro-
cessing HTTP redirects together with HTTP chunked encoding. The chunk
parser uses strtol() to parse each chunk’s length into a variable of type long.
Prior to copying the chunk’s contents into a buffer on the stack, the code val-
idates that the chunk size specified in the HTTP request fits into the buffer,
forgetting to ensure the supplied value is actually a positive number. The code
then tries to skip the chunk in pieces of 512 bytes but ends passing the negative
length to connect.c:fd read(). Unfortunately, fd read()’s length argument
is of type int, thus the high 32 bit of the length variable are discarded. There-
fore, values in the range 0xffffffff00000000 to 0xffffffffffffffff pass all
checks while the truncation to a 32 bit value still allows an attacker to control
the length of the read chunk and to overflow the dlbuf variable on the stack.

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 15

Exploitation of the Bug The bug allows for a continuous write of arbitrary
data on the stack. Due to the absence of stack canaries, the saved return ad-
dress on the stack can be compromised. However, without the knowledge of the
current state of ASLR, there is not much an attacker can do, as she does not
know any pointer pointing into valid memory (the binary is compiled as position
independent executable). Consequently, the only remaining option to continue
exploitation is a partial pointer override. In this technique, an attacker abuses
the fact that ASLR operates at a page (4096 = 212 bytes) granularity. Therefore,
the lowest 12 bits of any object within the address space are deterministic. As
a consequence, an attacker can now trade the number of reachable jump targets
reachable by a ret for exploit reliability. For example, a two-byte partial pointer
overwrite needs to guess 2 · 8 − 12 = 4 bits of randomness, allowing to transfer
control to a region sharing the same 22·8 = 65536 byte region with the origi-
nal return address. Automatically evaluating all targets within this region using
dynamic analysis does not unveil any target where an attacker could trivially
obtain arbitrary code execution. The only noteworthy effect that can be ob-
served is when targeting body file send(), as register allocation (cf. Figure 2)
matches the signature of this function with rsi pointing to attacker controlled
data specifying a file name to transfer from the client to the server.

However, when running in context of Intel Pin we can inject and execute
shellcode situated in non-executable memory regions, reducing the challenge of
achieving code execution to just having to find a reliable mechanism to jump
to a pointer to data we control. Our full exploit chain is visualized in Figure 2:
Fortunately, when reaching the end of the skip short body() function the rsi

register contains the address of dlbuf (controlled by the attacker). However,
there are no convenient gadgets reachable with a partial overwrite on the return
address which may divert the code execution to the address contained in rsi.
We remedy this by injecting our own jmp rsi gadget into a buffer that we
can divert control to using the partial overwrite in step 1.. We can reach a stack
lifting gadget with a partial overwrite (step 2.) that increments the stack pointer
by ∆ = 0x88 bytes (step 3.). The new stack pointer location now points to a
pointer to the UTF-8 encoded value of the contents of the Set-Cookie header
of the HTTP response. At this point the ret will transfer control to an attacker
controlled buffer (steps 4.1 and 4.2) but the UTF-8 encoding constrains the
shellcode in an uncomfortable way. Luckily enough, the string V\xff is encoded
to V\xc3\xbf which is perfectly valid UTF-8 and disassembles to push rsi; ret

at the same time. As rsi still points to (now unconstrained) attacker controlled
shellcode from the HTTP response body, this control transfer (step 5.) is the
last step in achieving code execution. This attack succeeds with a probability of
1
16 , due to the partial pointer override used in the first step.

6 Discussion

We conclude this work by inviting other researchers to reproduce our findings,
discussing limitations and future improvements.

16 Kirsch, Zhechev, Bierbaumer, Kittel

6.1 Reproducibility & Source Code Availability

In the spirit of open research and to enable others to reproduce our findings,
we publish the source code of all the experiments conducted in context of this
work. A Docker container is available via download at https://kirschju.re/

static/pwin.zip.

6.2 Limitations & Future Work

There are some known limitations associated with the proposed methodologies.
First, the detect mechanism can be avoided by extending DBI frameworks. How-
ever, we already discussed that the JIT compiler introduces a lot of noise in the
normal execution of the application constantly turning up new possibilities to
detect irregularities. Secondly, to escape the DBI sandbox, the application has to
execute a function at least twice and simultaneously know its address in the code
cache. Moreover, it needs to alter this function in the code cache before its last
execution. Additionally, to escape DBI without knowing exactly the address of
a function executed at least twice requires calculation of the necessary memory
locations. This is only possible, since the offset between pages created by mmap

is constant [18]. However, the instrumented application, as well as DBI binaries
and libraries have to be known because they reside in the code cache, too.

The research presented in this work discussed in detail the disadvantages of
utilizing DBI engines in the security domain. The most fundamental problem is
that DBI logic and application reside in the same address space, with no iso-
lation present. The question remains how Intel Pin and other DBI frameworks
can mitigate this problem in the future and how these techniques would influ-
ence our research. A possible mitigation strategy might introduce Intel memory
protection keys (MPK) to change memory access permissions from user space
without sacrificing performance.

6.3 Conclusion

In this paper, we showed that DBI frameworks are commonly used in a context
of security, both as an analysis platform as well as a hardening tool. Thus we
systematically discussed the requirements for DBI frameworks to be used within
such a context. We showed, that DBI is not able to hold these requirements
in practice. We demonstrate, that the stealthiness requirement does not hold in
practice by enumerating different inherent techniques to detect DBI. In addition,
we also attested that DBI does not sufficiently isolate instrumented applications
from the instrumentation framework, which provides a possibility for instru-
mented applications to gain arbitrary code execution on the analysis system.
Finally, we argue, that instead of increasing security by introducing DBI based
software hardening measures, DBI actually decreases the overall security by es-
calating an otherwise hard-to-exploit real world bugs into to full code execution.
To support our claim, we implemented a couple of proof of concepts (POCs) to
support our claims, which we are happy to freely share with the community.

https://kirschju.re/static/pwin.zip
https://kirschju.re/static/pwin.zip

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 17

A Appendix

For all our tools we have included directly usable docker container in order to
make it easy to reproduce our work.

A.1 Memory Maps

[rw-] [stack]
[r--] locale.nls

[rw-] [heap]
[rwx] instrumenter-local

[rwx] instrumenter-heap-little
[rwx] [Code Cache]

[rwx] instrumenter-heap-big
[rw-] [big heap]

[r--] MeasurePinTool.dll
[r-x] MeasurePinTool.dll
[r--] MeasurePinTool.dll
[rw-] MeasurePinTool.dll
[-w-] MeasurePinTool.dll
[rw-] MeasurePinTool.dll
[r--] MeasurePinTool.dll
[rw-] MeasurePinTool.dll
[r--] MeasurePinTool.dll

[r--] pinvm.dll
[r-x] pinvm.dll
[r--] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[r--] pinvm.dll

[r--] measure.exe
[r-x] measure.exe
[r--] measure.exe
[rw-] measure.exe
[r--] measure.exe

[r--] KernelBase.dll
[r-x] KernelBase.dll
[r--] KernelBase.dll
[rw-] KernelBase.dll
[-w-] KernelBase.dll
[r--] KernelBase.dll

[r--] kernel32.dll
[r-x] kernel32.dll
[r--] kernel32.dll
[rw-] kernel32.dll
[-w-] kernel32.dll
[r--] kernel32.dll

[r--] ntdll.dll
[r-x] ntdll.dll
[r--] ntdll.dll
[rw-] ntdll.dll
[-w-] ntdll.dll
[rw-] ntdll.dll
[r--] ntdll.dll

[r
w-

]
[s

ta
ck

]
[r

--
]

lo
ca

le
.n

ls
[r

w-
]

[h
ea

p]
[r

wx
]

in
st

ru
me

nt
er

-l
oc

al
[r

wx
]

in
st

ru
me

nt
er

-h
ea

p-
li

tt
le

[r
wx

]
[C

od
e

Ca
ch

e]

[r
wx

]
in

st
ru

me
nt

er
-h

ea
p-

bi
g

[r
w-

]
[b

ig
 h

ea
p]

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
-x

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[-
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
pi

nv
m.

dl
l

[r
-x

]
pi

nv
m.

dl
l

[r
--

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[r
--

]
pi

nv
m.

dl
l

[r
--

]
me

as
ur

e.
ex

e
[r

-x
]

me
as

ur
e.

ex
e

[r
--

]
me

as
ur

e.
ex

e
[r

w-
]

me
as

ur
e.

ex
e

[r
--

]
me

as
ur

e.
ex

e
[r

--
]

Ke
rn

el
Ba

se
.d

ll
[r

-x
]

Ke
rn

el
Ba

se
.d

ll
[r

--
]

Ke
rn

el
Ba

se
.d

ll
[r

w-
]

Ke
rn

el
Ba

se
.d

ll
[-

w-
]

Ke
rn

el
Ba

se
.d

ll
[r

--
]

Ke
rn

el
Ba

se
.d

ll
[r

--
]

ke
rn

el
32

.d
ll

[r
-x

]
ke

rn
el

32
.d

ll
[r

--
]

ke
rn

el
32

.d
ll

[r
w-

]
ke

rn
el

32
.d

ll
[-

w-
]

ke
rn

el
32

.d
ll

[r
--

]
ke

rn
el

32
.d

ll
[r

--
]

nt
dl

l.
dl

l
[r

-x
]

nt
dl

l.
dl

l
[r

--
]

nt
dl

l.
dl

l
[r

w-
]

nt
dl

l.
dl

l
[-

w-
]

nt
dl

l.
dl

l
[r

w-
]

nt
dl

l.
dl

l
[r

--
]

nt
dl

l.
dl

l

[r-xp] measure
[r--p] measure
[rw-p] measure
[rw-p] [heap]
[rw-p] [big heap]
[r-xp] libc-2.26.so
[---p] libc-2.26.so
[r--p] libc-2.26.so
[rw-p] libc-2.26.so
[rwxp] [Code Cache]
[rwxp] [PIN Stack]
[r-xp] libpin3dwarf.so
[r--p] libpin3dwarf.so
[rw-p] libpin3dwarf.so
[r-xp] MeasurePinTool.so
[r--p] MeasurePinTool.so
[rw-p] MeasurePinTool.so
[r-xp] libc-dynamic.so
[r--p] libc-dynamic.so
[rw-p] libc-dynamic.so
[r-xp] libxed.so
[r--p] libxed.so
[rw-p] libxed.so
[r-xp] pinbin
[r--p] pinbin
[rw-p] pinbin
[r-xp] ld-2.26.so
[r-xp] libunwind-dynamic.so
[r--p] libunwind-dynamic.so
[rw-p] libunwind-dynamic.so
[r-xp] libm-dynamic.so
[r--p] libm-dynamic.so
[rw-p] libm-dynamic.so
[r-xp] libstlport-dynamic.so
[r--p] libstlport-dynamic.so
[rw-p] libstlport-dynamic.so
[r-xp] linker
[r--p] linker
[rw-p] linker
[r--p] ld-2.26.so
[rw-p] ld-2.26.so
[rw-p] [stack]
[r--p] [vvar]
[r-xp] [vdso]
[r-xp] [vsyscall]

[r
-x

p]
 m

ea
su

re
[r

--
p]

 m
ea

su
re

[r
w-

p]
 m

ea
su

re
[r

w-
p]

 [
he

ap
]

[r
w-

p]
 [

bi
g

he
ap

]
[r

-x
p]

 l
ib

c-
2.

26
.s

o
[-

--
p]

 l
ib

c-
2.

26
.s

o
[r

--
p]

 l
ib

c-
2.

26
.s

o
[r

w-
p]

 l
ib

c-
2.

26
.s

o
[r

wx
p]

 [
Co

de
 C

ac
he

]
[r

wx
p]

 [
PI

N
St

ac
k]

[r
-x

p]
 l

ib
pi

n3
dw

ar
f.

so
[r

--
p]

 l
ib

pi
n3

dw
ar

f.
so

[r
w-

p]
 l

ib
pi

n3
dw

ar
f.

so
[r

-x
p]

 M
ea

su
re

Pi
nT

oo
l.

so
[r

--
p]

 M
ea

su
re

Pi
nT

oo
l.

so
[r

w-
p]

 M
ea

su
re

Pi
nT

oo
l.

so
[r

-x
p]

 l
ib

c-
dy

na
mi

c.
so

[r
--

p]
 l

ib
c-

dy
na

mi
c.

so
[r

w-
p]

 l
ib

c-
dy

na
mi

c.
so

[r
-x

p]
 l

ib
xe

d.
so

[r
--

p]
 l

ib
xe

d.
so

[r
w-

p]
 l

ib
xe

d.
so

[r
-x

p]
 p

in
bi

n
[r

--
p]

 p
in

bi
n

[r
w-

p]
 p

in
bi

n
[r

-x
p]

 l
d-

2.
26

.s
o

[r
-x

p]
 l

ib
un

wi
nd

-d
yn

am
ic

.s
o

[r
--

p]
 l

ib
un

wi
nd

-d
yn

am
ic

.s
o

[r
w-

p]
 l

ib
un

wi
nd

-d
yn

am
ic

.s
o

[r
-x

p]
 l

ib
m-

dy
na

mi
c.

so
[r

--
p]

 l
ib

m-
dy

na
mi

c.
so

[r
w-

p]
 l

ib
m-

dy
na

mi
c.

so
[r

-x
p]

 l
ib

st
lp

or
t-

dy
na

mi
c.

so
[r

--
p]

 l
ib

st
lp

or
t-

dy
na

mi
c.

so
[r

w-
p]

 l
ib

st
lp

or
t-

dy
na

mi
c.

so
[r

-x
p]

 l
in

ke
r

[r
--

p]
 l

in
ke

r
[r

w-
p]

 l
in

ke
r

[r
--

p]
 l

d-
2.

26
.s

o
[r

w-
p]

 l
d-

2.
26

.s
o

[r
w-

p]
 [

st
ac

k]
[r

--
p]

 [
vv

ar
]

[r
-x

p]
 [

vd
so

]
[r

-x
p]

 [
vs

ys
ca

ll
]

Random Offset
No Mapping Writable

Random Offset
≥ 1 Mapping Writable

Constant Offset
No Mapping Writable

Constant Offset
≥ 1 Mapping Writable

Constant Offset
≥ 1 Mapping Writable and Executable

Fig. 3: Color matrices showing memory regions sharing random or constant
distances with each other for applications instrumented by Linux (above right)
and Windows (down left) version of Pin. The region names in red are addi-
tional components added by the instrumentation framework while in black are
presented the program’s original pages.

18 Kirsch, Zhechev, Bierbaumer, Kittel

References

1. CVE-2014-0160. Available from MITRE, CVE-2017-13089., https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2017-13089, accessed: 2018-04-24

2. QuarkslaB Dynamic binary Instrumentation. https://qbdi.quarkslab.com/, ac-
cessed: 2018-04-24

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity princi-
ples, implementations, and applications. ACM Trans. Inf. Syst. Secur. 13, 4:1–4:40
(2009)

4. Banescu, S., Wüchner, T., Guggenmos, M., Ochoa, M., Pretschner, A.: Feebo: An
empirical evaluation framework for malware behavior obfuscation. arXiv preprint
arXiv:1502.03245 (2015)

5. Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and Implementation of
a Dynamic Optimization Framework for Windows. In: 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-4) (2001)

6. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. In: Code Generation and Optimization, 2003. CGO 2003. In-
ternational Symposium on. pp. 265–275. IEEE (2003)

7. Bruening, D., Zhao, Q.: Practical memory checking with dr. memory. In: Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization. pp. 213–223. IEEE Computer Society (2011)

8. Chiueh, T.c., Hsu, F.H.: Rad: A compile-time solution to buffer overflow attacks.
In: Distributed Computing Systems, 2001. 21st International Conference on. pp.
409–417. IEEE (2001)

9. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework. In:
Proceedings of the 2007 international symposium on Software testing and analysis.
pp. 196–206. ACM (2007)

10. Davi, L., Sadeghi, A.R., Winandy, M.: Ropdefender: a detection tool to defend
against return-oriented programming attacks. In: ASIACCS (2011)

11. Elsabagh, M., Barbará, D., Fleck, D., Stavrou, A.: Detecting rop with statistical
learning of program characteristics. In: Proceedings of the Seventh ACM on Con-
ference on Data and Application Security and Privacy. pp. 219–226. ACM (2017)

12. Follner, A., Bodden, E.: Ropocop - dynamic mitigation of code-reuse attacks. J.
Inf. Sec. Appl. 29, 16–26 (2016)

13. Francisco Falcón, N.R.: Dynamic Binary Instrumentation Frameworks: I know
you’re there spying on me. In: RECon12 (2012), https://recon.cx/2012/

schedule/attachments/42_FalconRiva_2012.pdf

14. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: Ndss. vol. 3, pp. 191–206 (2003)

15. Gröbert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: International Workshop on Recent Advances in In-
trusion Detection. pp. 41–60. Springer (2011)

16. Intel Corporation: Intel R© 64 and IA-32 Architectures Software Developer’s Manual
(January 2018)

17. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: Proceedings of the 11th USENIX Security Symposium. pp. 191–
206. USENIX Association, Berkeley, CA, USA (2002)

18. Kirsch, J., Bierbaumer, B., Kittel, T., Eckert, C.: Dynamic loader oriented pro-
gramming on linux. In: ROOTS (2017)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13089
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13089
https://qbdi.quarkslab.com/
https://recon.cx/2012/schedule/attachments/42_FalconRiva_2012.pdf
https://recon.cx/2012/schedule/attachments/42_FalconRiva_2012.pdf

PwIN - Pwning Intel piN Why DBI is unsuitable for security applications 19

19. Kulakov, Y.: Mazewalker - enriching static malware analysis. In: RE-
Con17 (2017), https://recon.cx/2017/montreal/resources/slides/

RECON-MTL-2017-MazeWalker.pdf

20. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.:
Scalability, fidelity and stealth in the drakvuf dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conference.
pp. 386–395. ACM (2014)

21. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Acm sigplan notices. vol. 40, pp. 190–200. ACM
(2005)

22. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: VEE (2007)

23. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM Sigplan notices. vol. 42, pp. 89–100. ACM (2007)

24. Nethercote, N., Walsh, R., Fitzhardinge, J.: Building workload characterization
tools with valgrind. In: IISWC (2006)

25. One, A.: Smashing the stack for fun and profit. phrack 49 (1996)
26. Polino, M., Continella, A., Mariani, S., D’Alessio, S., Fontana, L., Gritti, F.,

Zanero, S.: Measuring and defeating anti-instrumentation-equipped malware. In:
DIMVA (2017)

27. Qiang, W., Huang, Y., Zou, D., Jin, H., Wang, S., Sun, G.: Fully context-sensitive
cfi for cots binaries. In: ACISP (2017)

28. Quynh, N.A.: Skorpio: Advanced Binary Instrumentation Framework. In: OPCDE
2018. Dubai (Apr 2018)

29. Salwan, J., Saudel, F.: Triton: Framework d’exécution concolique et d’analyses en
runtime (2016)

30. Streak, P.: The Morris Worm: A Fifteen-Year Perspective (2003)
31. Tymburibá, M., Emilio, R., Pereira, F.: Riprop: A dynamic detector of rop attacks.

In: Proceedings of the 2015 Brazilian Congress on Software: Theory and Practice.
p. 2 (2015)

32. van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc, L., Slowinska,
A., Bos, H., Giuffrida, C.: Practical context-sensitive cfi. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. pp.
927–940. ACM (2015)

33. Vendicator, S.S.: A Stack Smashing Technique Protection Tool for Linux. http:
//www.angelfire.com/sk/stackshield/info.html (2000), accessed: 2018-04-24

https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-MazeWalker.pdf
https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-MazeWalker.pdf
http://www.angelfire.com/sk/stackshield/info.html
http://www.angelfire.com/sk/stackshield/info.html

	PwIN - Pwning Intel piN Why DBI is unsuitable for security applications

